Iterative fixed point theorems in E-metric spaces

被引:0
作者
Zsolt Páles
Ioan-Radu Petre
机构
[1] University of Debrecen,Institute of Mathematics
[2] University of Babeş–Bolyai,Department of Applied Mathematics
来源
Acta Mathematica Hungarica | 2013年 / 140卷
关键词
Contraction Principle; -metric space; fixed point; multivalued operator; -contraction; Riesz space; vector lattice; vector metric space; 47H04; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
We present a multivalued nonlinear fixed point theorem in an E-metric space introducing the concept of strict positivity in a Riesz space. Our result extends some well-known fixed point theorems obtained by J. Matkowski, R. Wȩgrzyk, R. Cristescu, and C. Çevik, I. Altun.
引用
收藏
页码:134 / 144
页数:10
相关论文
共 8 条
[1]  
Çevik C.(2009)Vector metric spaces and some properties Topol. Meth. Nonlinear Anal. 34 375-382
[2]  
Altun I.(2011)Fixed point theorems in vector metric spaces for single-valued operators Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 9 59-80
[3]  
Petre I.-R.(1977)A comparison of various definitions of contractive mappings Trans. Amer. Math. Soc. 226 257-290
[4]  
Rhoades B. E.(2008)The theory of a metrical fixed point theorem: theoretical and applicative relevances Fixed Point Theory 9 541-559
[5]  
Rus I. A.(1989)Contractive operators in partially ordered spaces Seminar on Diff. Equ. 3 181-214
[6]  
Voicu F.(1991)Fixed point theorems in spaces with vectorial metric Stud. Univ. Babeş–Bolyai, Math. 36 53-56
[7]  
Voicu F.(1982)Fixed point theorems for multifunctions and their applications to functional equations Diss. Math. 201 1-28
[8]  
Wȩgrzyk R.(undefined)undefined undefined undefined undefined-undefined