Zeta functions of projective hypersurfaces with ordinary double points

被引:0
作者
Vladimir Baranovsky
Scott Stetson
机构
[1] University of California Irvine,Department of Mathematics
来源
European Journal of Mathematics | 2022年 / 8卷
关键词
Zeta function; -Adic cohomology; Hypersurfaces with ordinary double points; 11S40; 14G10;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the approach of Abbott, Kedlaya and Roe to computation of the zeta function of a projective hypersurface with τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} isolated ordinary double points over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} given by the reduction of a homogeneous polynomial f∈Z[x0,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in {\mathbb {Z}}[x_0, \ldots , x_n]$$\end{document}, under the assumption of equisingularity over Zq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_q$$\end{document}. The algorithm is based on the results of Dimca and Saito (over the field C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} of complex numbers) on the pole order spectral sequence in the case of ordinary double points. We give some examples of explicit computations for surfaces in P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^3$$\end{document}.
引用
收藏
页码:738 / 765
页数:27
相关论文
共 14 条
[1]  
Choudary ADR(1994)Koszul complexes and hypersurface singularities Proc. Amer. Math. Soc. 121 1009-1016
[2]  
Dimca A(2002)A comparison theorem for weights J. Reine Angew. Math. 546 159-176
[3]  
Chiarellotto B(2019)Smooth models of singular Rev. Mat. Iberoam. 35 125-172
[4]  
Le Stum B(2013)-surfaces Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56 191-203
[5]  
Degtyarev A(2017)Syzygies of Jacobian ideals and defects of linear systems Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 60 351-371
[6]  
Dimca A(2016)Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points J. Symbolic Comput. 74 627-634
[7]  
Dimca A(2015)Syzygies of Jacobian ideals and weighted homogeneous singularities Proc. Edinb. Math. Soc. 58 333-354
[8]  
Saito M(1960)Koszul complexes and pole order filtrations Amer. J. Math. 82 631-648
[9]  
Dimca A(1976)On the rationality of the zeta function of an algebraic variety Ann. Inst. Fourier (Grenoble) 26 165-170
[10]  
Sticlaru G(undefined)On a generalization of de-Rham lemma undefined undefined undefined-undefined