The Schrödinger–Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

被引:0
作者
Fabio Briscese
机构
[1] Northumbria University,Department of Mathematics, Physics and Electrical Engineering
[2] Città Universitaria,Istituto Nazionale di Alta Matematica Francesco Severi, Gruppo Nazionale di Fisica Matematica
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schrödinger–Poisson equations in the large N limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as ħ∼M5/3G1/2(N/⟨ρ⟩)1/6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \sim M^{5/3} G^{1/2} (N/\langle \rho \rangle )^{1/6}$$\end{document}, where is G the gravitational constant, N and M are the number and the mass of the bodies, and ⟨ρ⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \rho \rangle $$\end{document} is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schrödinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.
引用
收藏
相关论文
共 99 条
[1]  
Springel V(2005)undefined Nature (London) 435 629-390
[2]  
Tempel E(2014)undefined Mon. Not. R. Astron. Soc. 438 3465-142
[3]  
Sumner TJ(2002)undefined Living Rev. Relativ. 5 4-320
[4]  
Bertone G(2005)undefined Phys. Rep. 405 279-L74
[5]  
Hooper D(2003)undefined Phys. Rev. Lett. 91 141302-3095
[6]  
Silk J(2011)undefined Phys. Rev. D 83 123505-499
[7]  
Jain B(2012)undefined Phys. Rev. D 85 063512-55
[8]  
Taylor A(2014)undefined J. Cosmol. Astropart. Phys. 3 018-499
[9]  
Chisari NE(2005)undefined Nature 435 629-1783
[10]  
Zaldarriaga M(2006)undefined Nature (London) 440 1137-346