On Maximal Extensions of Nilpotent Lie Algebras

被引:0
|
作者
V. V. Gorbatsevich
机构
来源
Functional Analysis and Its Applications | 2022年 / 56卷
关键词
nilpotent Lie algebra; solvable Lie algebra; extension; splitting;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:257 / 263
页数:6
相关论文
共 50 条
  • [41] Transitive Lie Algebras of Nilpotent Vector Fields and their Tanaka Prolongations
    Grabowska, Katarzyna
    Grabowski, Janusz
    Ravanpak, Zohreh
    JOURNAL OF LIE THEORY, 2021, 31 (04) : 1003 - 1014
  • [42] On characterizing pairs of nilpotent Lie algebras by their second relative homologies
    Edalatzadeh, Behrouz
    Hosseini, Seyedeh Narges
    Salemkar, Ali Reza
    JOURNAL OF ALGEBRA, 2020, 549 : 112 - 127
  • [43] DERIVATIONS OF CERTAIN NILPOTENT LIE ALGEBRAS OVER COMMUTATIVE RINGS
    Chen, Zhengxin
    Wang, Dengyin
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3736 - 3752
  • [44] Nilpotent lie algebras having the Schur multiplier of maximum dimension
    Niroomand, Peyman
    Shamsaki, Afsaneh
    QUAESTIONES MATHEMATICAE, 2020, 43 (09) : 1239 - 1246
  • [45] Automorphisms of certain nilpotent Lie algebras over commutative rings
    Cao, You'An
    Jiang, Dezhi
    Wang, Junying
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2007, 17 (03) : 527 - 555
  • [46] Characterizing nilpotent Lie algebras that satisfy the converse to the Schur theorem
    Afsaneh Shamsaki
    Peyman Niroomand
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [47] Algorithm to compute minimal matrix representation of nilpotent lie algebras
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (1-2) : 275 - 293
  • [48] On characterizing nilpotent Lie algebras by their multiplier, s(L)=4
    Shamsaki, Afsaneh
    Niroomand, Peyman
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 259 - 272
  • [49] Algorithm to compute the maximal abelian dimension of Lie algebras
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    COMPUTING, 2009, 84 (3-4) : 231 - 239
  • [50] Algorithm to compute the maximal abelian dimension of Lie algebras
    M. Ceballos
    J. Núñez
    A. F. Tenorio
    Computing, 2009, 84 : 231 - 239