The convergence of an interior point method for an elliptic control problem with mixed control-state constraints

被引:0
作者
Uwe Prüfert
Fredi Tröltzsch
Martin Weiser
机构
[1] Technische Universität Berlin,Institut für Mathematik
[2] Konrad-Zuse-Zentrum für Informationstechnik Berlin,undefined
来源
Computational Optimization and Applications | 2008年 / 39卷
关键词
Interior point method; Function space; Optimal control; Mixed control-state constraints; Lavrentiev regularization;
D O I
暂无
中图分类号
学科分类号
摘要
The paper addresses a primal interior point method for state-constrained PDE optimal control problems in function space. By a Lavrentiev regularization, the state constraint is transformed to a mixed control-state constraint with bounded Lagrange multiplier. Existence and convergence of the central path are established, and linear convergence of a short-step pathfollowing method is shown. The behaviour of the method is demonstrated by numerical examples.
引用
收藏
页码:183 / 218
页数:35
相关论文
共 32 条
  • [11] Kunisch K.(1979)A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state Z. Angew. Math. Mech. 59 737-739
  • [12] Casas E.(2000)Superlinear convergence of affine-scaling interior point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds SIAM J. Control Optim. 38 1938-1984
  • [13] Deuflhard P.(1999)Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds SIAM J. Control Optim. 37 731-764
  • [14] Potra F.(2004)Function space interior point methods for PDE constrained optimization Proc. Appl. Math. Mech. 4 43-46
  • [15] Grund T.(2005)Asymptotic Mesh Independence of Newton’s Method Revisited SIAM J. Numer. Anal. 42 1830-1845
  • [16] Rösch A.(undefined)undefined undefined undefined undefined-undefined
  • [17] Leibfritz F.(undefined)undefined undefined undefined undefined-undefined
  • [18] Sachs E.W.(undefined)undefined undefined undefined undefined-undefined
  • [19] Meyer C.(undefined)undefined undefined undefined undefined-undefined
  • [20] Rösch A.(undefined)undefined undefined undefined undefined-undefined