Convolution Quadrature Revisited

被引:0
作者
Christian Lubich
机构
[1] Universität Tübingen,Mathematisches Institut
来源
BIT Numerical Mathematics | 2004年 / 44卷
关键词
convolution quadrature; discretized operational calculus; linear multistep methods;
D O I
暂无
中图分类号
学科分类号
摘要
This article reviews convolution quadrature and its uses, extends the known approximation results for the case of sectorial Laplace transforms to finite-part convolutions with non-integrable kernel, and gives new, unified proofs of the optimal error bounds for both locally integrable and non-integrable convolution kernels.
引用
收藏
页码:503 / 514
页数:11
相关论文
共 50 条
  • [1] Convolution quadrature revisited
    Lubich, C
    BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 503 - 514
  • [2] Convolution Quadrature for Wave Simulations
    Hassell, Matthew
    Sayas, Francisco-Javier
    NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING, 2016, 9 : 71 - 159
  • [3] Generalized convolution quadrature with variable time stepping
    Lopez-Fernandez, Maria
    Sauter, Stefan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1156 - 1175
  • [4] Runge-Kutta Based Generalized Convolution Quadrature
    Lopez-Fernandez, Maria
    Sauter, Stefan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [5] Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation
    Chappell, David J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (02) : 640 - 666
  • [6] Fractional Variational Integrators Based on Convolution Quadrature
    Belgacem, Khaled Hariz
    Jimenez, Fernando
    Ober-Bloebaum, Sina
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [7] A convolution quadrature using derivatives and its application
    Hao Ren
    Junjie Ma
    Huilan Liu
    BIT Numerical Mathematics, 2024, 64
  • [8] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [9] An error analysis of Runge–Kutta convolution quadrature
    Lehel Banjai
    Christian Lubich
    BIT Numerical Mathematics, 2011, 51 : 483 - 496
  • [10] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)