Inequalities of Carlson Type for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Bloch Functions

被引:0
作者
I. R. Kayumov
Karl-Joachim Wirths
机构
[1] Kazan Federal University,Technische Universität Braunschweig
[2] Institut für Analysis und Algebra,undefined
关键词
Bloch functions; Taylor coefficients; bounded functions; area type inequality; 30H30; 30B10;
D O I
10.1007/s00009-020-01519-1
中图分类号
学科分类号
摘要
In this article, we prove inequalities for the Taylor coefficients of functions G holomorphic in the unit disc satisfying the condition |G(z)|(1-|z|2)α≤1,|z|<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G(z)|(1-|z|^2)^{\alpha }\le 1, |z|<1,$$\end{document} for fixed α≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0.$$\end{document} The upper bound for the modulus of the k-th Taylor coefficient is dependent on the moduli of some initial coefficients. As corollaries we get similar estimates for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Bloch functions and an estimate for an area type functional on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Bloch functions.
引用
收藏
相关论文
共 4 条
  • [1] Avkhadiev FG(1996)Estimates for Bloch functions and their generalization Doklady Akademii Nauk 349 583-585
  • [2] Kayumov IR(1978)Über holomorphe Funktionen, die einer Wachstumsbe–schränkung unterliegen Arch. Math. 30 606-612
  • [3] Wirths K-J(1993)On an extremum problem for Bloch functions J. Anal. 1 1-5
  • [4] Wirths K-J(undefined)undefined undefined undefined undefined-undefined