Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein-Uhlenbeck process

被引:0
作者
Tanaka K. [1 ]
机构
[1] Department of Economics, Hitotsubashi University, Kunitachi
基金
日本学术振兴会;
关键词
Characteristic function; Fractional Ornstein-Uhlenbeck process; Maximum likelihood estimator; Minimum contrast estimator; Unit root test;
D O I
10.1007/s11203-013-9085-y
中图分类号
学科分类号
摘要
We discuss some inference problems associated with the fractional Ornstein-Uhlenbeck (fO-U) process driven by the fractional Brownian motion (fBm). In particular, we are concerned with the estimation of the drift parameter, assuming that the Hurst parameter H is known and is in [1/2, 1). Under this setting we compute the distributions of the maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) for the drift parameter, and explore their distributional properties by paying attention to the influence of H and the sampling span M. We also deal with the ordinary least squares estimator (OLSE) and examine the asymptotic relative efficiency. It is shown that the MCE is asymptotically efficient, while the OLSE is inefficient. We also consider the unit root testing problem in the fO-U process and compute the power of the tests based on the MLE and MCE. © 2013 Springer Science+Business Media Dordrecht.
引用
收藏
页码:173 / 192
页数:19
相关论文
共 50 条
[31]   On the spectral density of fractional Ornstein-Uhlenbeck processes [J].
Shi, Shuping ;
Yu, Jun ;
Zhang, Chen .
JOURNAL OF ECONOMETRICS, 2024, 245 (1-2)
[32]   Hypothesis testing of the drift parameter sign for fractional Ornstein-Uhlenbeck process [J].
Kukush, Alexander ;
Mishura, Yuliya ;
Ralchenko, Kostiantyn .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01) :385-400
[33]   Harnack inequalities for functional SDEs driven by fractional Ornstein-Uhlenbeck process [J].
Zhi Li ;
Meiqian Liu ;
Liping Xu .
Fractional Calculus and Applied Analysis, 2025, 28 (3) :1611-1631
[34]   On Simulation of a Fractional Ornstein-Uhlenbeck Process of the Second Kind by the Circulant Embedding Method [J].
Morlanes, Jose Igor ;
Andreev, Andriy .
STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 :155-164
[35]   Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process [J].
Maslowski, Bohdan ;
Pospisil, Jan .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (03) :401-429
[36]   A large deviation result for maximum likelihood estimator of non-homogeneous Ornstein-Uhlenbeck processes [J].
Zhao, Shoujiang ;
Liu, Qiaojing .
STATISTICS & PROBABILITY LETTERS, 2020, 162
[37]   Pairs trading with fractional Ornstein-Uhlenbeck spread model [J].
Xiang, Yun ;
Zhao, Yonghong ;
Deng, Shijie .
APPLIED ECONOMICS, 2023, 55 (23) :2607-2623
[38]   An active fractional Ornstein-Uhlenbeck particle: diffusion and dissipation [J].
Rangaig, Norodin A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07)
[39]   Large deviations for drift parameter estimator of mixed fractional Ornstein-Uhlenbeck process [J].
Marushkevych, Dmytro .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (02) :107-117
[40]   Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process [J].
Bohdan Maslowski ;
Jan Pospíšil .
Applied Mathematics and Optimization, 2008, 57 :401-429