Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein-Uhlenbeck process

被引:0
作者
Tanaka K. [1 ]
机构
[1] Department of Economics, Hitotsubashi University, Kunitachi
基金
日本学术振兴会;
关键词
Characteristic function; Fractional Ornstein-Uhlenbeck process; Maximum likelihood estimator; Minimum contrast estimator; Unit root test;
D O I
10.1007/s11203-013-9085-y
中图分类号
学科分类号
摘要
We discuss some inference problems associated with the fractional Ornstein-Uhlenbeck (fO-U) process driven by the fractional Brownian motion (fBm). In particular, we are concerned with the estimation of the drift parameter, assuming that the Hurst parameter H is known and is in [1/2, 1). Under this setting we compute the distributions of the maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) for the drift parameter, and explore their distributional properties by paying attention to the influence of H and the sampling span M. We also deal with the ordinary least squares estimator (OLSE) and examine the asymptotic relative efficiency. It is shown that the MCE is asymptotically efficient, while the OLSE is inefficient. We also consider the unit root testing problem in the fO-U process and compute the power of the tests based on the MLE and MCE. © 2013 Springer Science+Business Media Dordrecht.
引用
收藏
页码:173 / 192
页数:19
相关论文
共 16 条
[1]  
Bercu B., Coutin L., Savy N., Sharp large deviations for the fractional Ornstein-Uhlenbeck process, SIAM Theory Probab Appl, 55, pp. 575-610, (2011)
[2]  
Bishwal J.P.N., Parameter Estimation in Stochastic Differential Equations, (2008)
[3]  
Bishwal J.P.N., Minimum contrast estimation in fractional Ornstein-Uhlenbeck process: continuous and discrete sampling, Fract Calc Appl Anal, 14, pp. 375-410, (2011)
[4]  
Brouste A., Kleptsyna M., Asymptotic properties of MLE for partially observed fractional diffusion system, Stat Inference Stoch Process, 13, pp. 1-13, (2010)
[5]  
Cheridito P., Kawaguchi H., Maejima M., Fractional Ornstein-Uhlenbeck processes, Electron J Probab, 8, pp. 1-14, (2003)
[6]  
Duncan T.E., Hu Y., Pasik-Duncan B., Stochastic calculus for fractional Brownian motion I, Theory SIAM J Control Optim, 38, pp. 582-612, (2000)
[7]  
Gripenberg G., Norros I., On the prediction of fractional Brownian motion, J Appl Probab, 33, pp. 400-410, (1996)
[8]  
Hu Y., Nualart D., Parameter estimation for fractional Ornstein-Uhlenbeck processes, Stat Probab Lett, 80, pp. 1030-1038, (2010)
[9]  
Kleptsyna M.L., Le Breton A., Roubaud M.C., Parameter estimation and optimal filtering for fractional type stochastic systems, Stat Inference Stoch Process, 3, pp. 173-182, (2000)
[10]  
Kleptsyna M.L., Le Breton A., Statistical analysis of the fractional Ornstein-Uhlenbeck type process, Stat Inference Stoch Process, 5, pp. 229-248, (2002)