A Bayesian-like estimator of the process capability index Cpmk

被引:0
|
作者
W. L. Pearn
G. H. Lin
机构
[1] Department of Industrial Engineering & Management,
[2] National Chiao Tung University,undefined
[3] ,undefined
[4] Department of Communication Engineering,undefined
[5] National Penghu,undefined
[6] Institute of Technology,undefined
[7] Penghu,undefined
[8] Taiwan,undefined
[9] ROC,undefined
来源
Metrika | 2003年 / 57卷
关键词
Keywords and Phrases: process capability index; Bayesian-like estimator; consistent; mixture distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Pearn et al. (1992) proposed the capability index Cpmk, and investigated the statistical properties of its natural estimator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for stable normal processes with constant mean μ. Chen and Hsu (1995) showed that under general conditions the asymptotic distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is normal if μ≠m, and is a linear combination of the normal and the folded-normal distributions if μ=m, where m is the mid-point between the upper and the lower specification limits. In this paper, we consider a new estimator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for stable processes under a different (more realistic) condition on process mean, namely, P (μ≥m)=p, 0≤p≤1. We obtain the exact distribution, the expected value, and the variance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} under normality assumption. We show that for P (μ≥m)=0, or 1, the new estimator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the MLE of Cpmk, which is asymptotically efficient. In addition, we show that under general conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is consistent and is asymptotically unbiased. We also show that the asymptotic distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a mixture of two normal distributions.
引用
收藏
页码:303 / 312
页数:9
相关论文
共 50 条