Nonparametric maximum likelihood estimation in a non locally compact setting

被引:0
作者
Jean-Claude Massé
机构
[1] Université Laval,Département de Mathématiques et de Statistique
来源
Metrika | 1997年 / 46卷
关键词
M-estimation; -estimation; nonparametric maximum likelihood estimation; strong consistency; log likelihood dominance; estimation of a discrete probability measure; estimation of a unimodal density; estimation of densities with monotone failure rates; convergence of empirical measures; sequential compactness;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum likelihood estimation is considered in the context of infinite dimensional parameter spaces. It is shown that in some locally convex parameter spaces sequential compactness of the bounded sets ensures the existence of minimizers of objective functions and the consistency of maximum likelihood estimators in an appropriate topology. The theory is applied to revisit some classical problems of nonparametric maximum likelihood estimation, to study location parameters in Banach spaces, and finally to obtain Varadarajan’s theorem on the convergence of empirical measures in the form of a consistency result for a sequence of maximum likelihood estimators. Several parameter spaces sharing the crucial compactness property are identified.
引用
收藏
页码:123 / 145
页数:22
相关论文
共 19 条
[11]  
Massé J-C(1973)( Ann. Stat. 1 888-901
[12]  
Marshall AW(1977)) SIAM J. Control Opt. 15 859-903
[13]  
Proschan F(1985)Consistency of maximum likelihood estimators for certain nonparametric families Ann. Stat. 13 932-946
[14]  
Pełczyński A(1970)On the measurability and consistency of maximum likelihood estimates for unimodal densities Ann. Math. Statist. 41 457-471
[15]  
Pfanzagl J(undefined)Survey of measurable selection theorems undefined undefined undefined-undefined
[16]  
Reiss RD(undefined)Strong consistency of approximate maximum likelihood estimators with applications in nonparametrics undefined undefined undefined-undefined
[17]  
Wagner DA(undefined)Maximum likelihood estimation of a unimodal density I, II undefined undefined undefined-undefined
[18]  
Wang J-L(undefined)undefined undefined undefined undefined-undefined
[19]  
Wegman EJ(undefined)undefined undefined undefined undefined-undefined