Nonparametric maximum likelihood estimation in a non locally compact setting

被引:0
作者
Jean-Claude Massé
机构
[1] Université Laval,Département de Mathématiques et de Statistique
来源
Metrika | 1997年 / 46卷
关键词
M-estimation; -estimation; nonparametric maximum likelihood estimation; strong consistency; log likelihood dominance; estimation of a discrete probability measure; estimation of a unimodal density; estimation of densities with monotone failure rates; convergence of empirical measures; sequential compactness;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum likelihood estimation is considered in the context of infinite dimensional parameter spaces. It is shown that in some locally convex parameter spaces sequential compactness of the bounded sets ensures the existence of minimizers of objective functions and the consistency of maximum likelihood estimators in an appropriate topology. The theory is applied to revisit some classical problems of nonparametric maximum likelihood estimation, to study location parameters in Banach spaces, and finally to obtain Varadarajan’s theorem on the convergence of empirical measures in the form of a consistency result for a sequence of maximum likelihood estimators. Several parameter spaces sharing the crucial compactness property are identified.
引用
收藏
页码:123 / 145
页数:22
相关论文
共 19 条
[1]  
Bahadur R(1967)Rates of convergence of estimates and test statistics Ann. Math. Stat. 38 303-324
[2]  
Brown LD(1973)Measurable selection of extrema Ann. Statist. 1 902-912
[3]  
Purves R(1954)The minimum of a certain definite integral suggested by the maximum likelihood estimate of a distribution function (Abstract) Bull. Amer. Soc. 60 535-535
[4]  
Brown LD(1956)On the theory of mortality measurement, part II Skand. Akt. 39 125-153
[5]  
Ewing GM(1964)Robust estimation of a location parameter Ann. Math. Statist. 35 73-101
[6]  
Reid WT(1967)The behavior of maximum likelihood estimates under non-standard conditions Proc. Fifth Berkeley Symp. Math. Stat. Probab., Univ. Calif. Press 1 221-233
[7]  
Grenander U(1992)A counterexample on the existence of the Stat. Probab. Letters 13 117-120
[8]  
Huber PJ(1965)-median Ann. Math. Statist. 36 69-77
[9]  
Huber PJ(1968)Maximum likelihood estimation for distributions with monotone failure rate Studia Math. XXX 231-246
[10]  
León CA(1988)On Banach spaces containing In particular: Mixtures. J. Stat. Plan. Infer. 19 137-158