A Minimax Theorem in Banach Lattices

被引:0
作者
Emma D'Aniello
机构
[1] Università di Napoli Fe-derico II,Dipartimento di Matematica e Applicazioni R. Caccioppoli
来源
Positivity | 2000年 / 4卷
关键词
Banach lattice; capacity; vector measure;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is mainly concerned with measures which take their values in a Banach lattice. Examples of capacities are given and a type of minimax theorem for vector capacities is proved.
引用
收藏
页码:143 / 160
页数:17
相关论文
共 15 条
[1]  
Anger B.(1971)Approximation of Capacities by Measures Lecture Notes in Math 226 152-176
[2]  
Choquet G.(1953)Sur certains espaces considérés par M. H. Stone Theory of Capacities 5 131-295
[3]  
D'Aniello E.(1998)Duality Theory for marginal problems Vector-Valued Capacities XLVII 311-324
[4]  
Shortt R. M.(1951)Weak Convergence of Vector Measures Summa Brasiliensis Mathematicae 11 151-182
[5]  
Dixmier J.(1984)Ñber eine Schar von Regulartätsbedingungen Z. Wahrschein-lichkeitstheorie 67 399-432
[6]  
Kellerer H. G.(1994)Ñber eine Schar von Regulartätsbedingungen II Publ. Math. (Debrecen) 45 71-92
[7]  
März M.(1960)Some characterizations of normal and perfectly normal spaces Math. Nachr. 22 93-128
[8]  
Shortt R. M.(1961)Stone Algebra-Valued Measures and Integrals Math. Nachr. 23 149-159
[9]  
Matthes K.(1952)Vector Lattice Measures on Locally Compact Spaces Duke Math. J. 19 289-292
[10]  
Matthes K.(1969)An Algebraic Characterization of Vector Lattices with the Borel Regularity Property Proceedings of the London Mathematical Society 19 107-122