Analytic Semigroup Approach to Generalized Navier–Stokes Flows in Besov Spaces

被引:0
作者
Zhi-Min Chen
机构
[1] University of Southampton,Ship Science
[2] Shenzhen University,School of Mathematics and Statistics
来源
Journal of Mathematical Fluid Mechanics | 2017年 / 19卷
关键词
Generalized Navier–Stokes equations; well-posedness; analytic semigroup; Besov spaces; 35B32; 35B35; 35Q35; 86A10;
D O I
暂无
中图分类号
学科分类号
摘要
The energy dissipation of the Navier–Stokes equations is controlled by the viscous force defined by the Laplacian -Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta $$\end{document}, while that of the generalized Navier–Stokes equations is determined by the fractional Laplacian (-Δ)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^\alpha $$\end{document}. The existence and uniqueness problem is always solvable in a strong dissipation situation in the sense of large α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} but it becomes complicated when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is decreasing. In this paper, the well-posedness regarding to the unique existence of small time solutions and small initial data solutions is examined in critical homogeneous Besov spaces for α≥1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1/2$$\end{document}. An analytic semigroup approach to the understanding of the generalized Navier–Stokes equations is developed and thus the well-posedness on the equations is examined in a manner different to earlier investigations.
引用
收藏
页码:709 / 724
页数:15
相关论文
共 50 条
[31]   Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces [J].
Jiang, Ziwen ;
Wang, Lizhen .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04)
[32]   OPTIMAL EMBEDDINGS OF GENERALIZED BESOV SPACES [J].
Bashir, Zia ;
Karadzhov, Georgi E. .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06) :799-806
[33]   Analytic Besov spaces, approximation, and closed ideals [J].
Bahajji-El Idrissi, Hafid ;
El Azhar, Hamza .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01) :259-268
[34]   Global well-posedness and asymptotic behavior for Navier-Stokes-Coriolis equations in homogeneous Besov spaces [J].
Ferreira, Lucas C. F. ;
Angulo-Castillo, Vladimir .
ASYMPTOTIC ANALYSIS, 2019, 112 (1-2) :37-58
[35]   Optimal decay rates for the 3D chemotaxis-Navier-Stokes equations in critical Besov spaces [J].
Zhang, Qian .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (04)
[36]   Wavelet bases in generalized Besov spaces [J].
Almeida, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) :198-211
[37]   Ill-posedness for the compressible Navier-Stokes equations under barotropic condition in limiting Besov spaces [J].
Iwabuchi, Tsukasa ;
Ogawa, Takayoshi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (02) :353-394
[38]   Well-posedness and ill-posedness of the stationary Navier-Stokes equations in toroidal Besov spaces [J].
Tsurumi, Hiroyuki .
NONLINEARITY, 2019, 32 (10) :3798-3819
[39]   Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices [J].
Yuan, Baoquan ;
Zhang, Bo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 242 (01) :1-10