Analytic Semigroup Approach to Generalized Navier–Stokes Flows in Besov Spaces

被引:0
作者
Zhi-Min Chen
机构
[1] University of Southampton,Ship Science
[2] Shenzhen University,School of Mathematics and Statistics
来源
Journal of Mathematical Fluid Mechanics | 2017年 / 19卷
关键词
Generalized Navier–Stokes equations; well-posedness; analytic semigroup; Besov spaces; 35B32; 35B35; 35Q35; 86A10;
D O I
暂无
中图分类号
学科分类号
摘要
The energy dissipation of the Navier–Stokes equations is controlled by the viscous force defined by the Laplacian -Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta $$\end{document}, while that of the generalized Navier–Stokes equations is determined by the fractional Laplacian (-Δ)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^\alpha $$\end{document}. The existence and uniqueness problem is always solvable in a strong dissipation situation in the sense of large α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} but it becomes complicated when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is decreasing. In this paper, the well-posedness regarding to the unique existence of small time solutions and small initial data solutions is examined in critical homogeneous Besov spaces for α≥1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1/2$$\end{document}. An analytic semigroup approach to the understanding of the generalized Navier–Stokes equations is developed and thus the well-posedness on the equations is examined in a manner different to earlier investigations.
引用
收藏
页码:709 / 724
页数:15
相关论文
共 50 条
[21]   Well-Posedness of Mild Solutions for the Fractional Navier-Stokes Equations in Besov Spaces [J].
Xi, Xuan-Xuan ;
Zhou, Yong ;
Hou, Mimi .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[22]   Bilinear estimates and uniqueness for Navier-Stokes equations in critical Besov-type spaces [J].
Ferreira, Lucas C. F. ;
Perez-Lopez, Jhean E. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) :379-400
[23]   Well-posedness of the compressible Navier-Stokes-Poisson system in the critical Besov spaces [J].
Chikami, Noboru ;
Ogawa, Takayoshi .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (02) :717-747
[24]   Global Well-Posedness for Inhomogeneous Navier–Stokes Equations in Endpoint Critical Besov Spaces [J].
Myong-Hwan Ri .
Journal of Mathematical Fluid Mechanics, 2021, 23
[25]   An extension criterion for the local in time solution of the chemotaxis Navier–Stokes equations in the critical Besov spaces [J].
Choe H.J. ;
Lkhagvasuren B. .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2017, 63 (2) :277-288
[26]   Nonstationary Stokes system in Besov spaces [J].
Zadrzynska, Ewa ;
Zajaczkowski, Wojciech M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (03) :360-383
[27]   Besov regularity for the Stokes and the Navier-Stokes system in polyhedral domains [J].
Eckhardt, Frank .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11) :1161-1173
[28]   Global solutions to Keller-Segel-Navier-Stokes equations with a class of large initial data in critical Besov spaces [J].
Yang, Minghua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) :7425-7437
[29]   A note on lower bounds of decay rates for solutions to the Navier-Stokes equations in the norms of Besov spaces [J].
Skalak, Zdenek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 :228-233
[30]   Global Well-Posedness for Inhomogeneous Navier-Stokes Equations in Endpoint Critical Besov Spaces [J].
Ri, Myong-Hwan .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)