Automatic continuity of homomorphisms between topological semigroups

被引:0
作者
Taras Banakh
Iryna Pastukhova
机构
[1] Ivan Franko National University of Lviv,
[2] Jan Kochanowski University in Kielce,undefined
来源
Semigroup Forum | 2015年 / 90卷
关键词
Continuous homomorphism; Topological inverse semigroup; Topological Clifford semigroup; Topological semilattice;
D O I
暂无
中图分类号
学科分类号
摘要
According to an old theorem of Yeager (Trans Am Math Soc 215:253–267, 1976), a homomorphism h:X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:X\rightarrow Y$$\end{document} between compact Hausdorff topological Clifford semigroups is continuous if and only if for every subgroup H⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\subset X$$\end{document} and every subsemilattice E⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\subset X$$\end{document} the restrictions h|H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h|H$$\end{document} and h|E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h|E$$\end{document} are continuous. In this paper we extend this Yeager result beyond the class of compact topological Clifford semigroups.
引用
收藏
页码:280 / 295
页数:15
相关论文
共 9 条
[1]  
Banakh T(2013)Topological and ditopological unosemigroups Mat. Stud. 39 119-133
[2]  
Pastukhova I(1993)The Ellis theorem and continuity in groups Topol. Appl. 50 73-80
[3]  
Bouziad A(1971)A construction principle and compact Clifford semigroups Semigr. Forum 2 343-353
[4]  
Bowman T(1988)Espaces héréditairement de Baire Fund. Math. 129 199-206
[5]  
Debs G(1928)Relativ perfekte Teile von Punktmengen und Mengen (A) Fund. Math. 12 78-109
[6]  
Hurewicz W(1987)Remarks on a game of Choquet Colloq. Math. 51 365372-276
[7]  
Telgársky R(1987)Topological games: on the 50th anniversary of the Banach-Mazur game Rocky Mt. J. Math. 17 227-267
[8]  
Telgársky R(1976)On the topology of a compact inverse Clifford semigroup Trans. Am. Math. Soc. 215 253-undefined
[9]  
Yeager DP(undefined)undefined undefined undefined undefined-undefined