Automatic continuity of homomorphisms between topological semigroups

被引:0
|
作者
Taras Banakh
Iryna Pastukhova
机构
[1] Ivan Franko National University of Lviv,
[2] Jan Kochanowski University in Kielce,undefined
来源
Semigroup Forum | 2015年 / 90卷
关键词
Continuous homomorphism; Topological inverse semigroup; Topological Clifford semigroup; Topological semilattice;
D O I
暂无
中图分类号
学科分类号
摘要
According to an old theorem of Yeager (Trans Am Math Soc 215:253–267, 1976), a homomorphism h:X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:X\rightarrow Y$$\end{document} between compact Hausdorff topological Clifford semigroups is continuous if and only if for every subgroup H⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\subset X$$\end{document} and every subsemilattice E⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\subset X$$\end{document} the restrictions h|H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h|H$$\end{document} and h|E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h|E$$\end{document} are continuous. In this paper we extend this Yeager result beyond the class of compact topological Clifford semigroups.
引用
收藏
页码:280 / 295
页数:15
相关论文
共 27 条
  • [1] Automatic continuity of homomorphisms between topological semigroups
    Banakh, Taras
    Pastukhova, Iryna
    SEMIGROUP FORUM, 2015, 90 (01) : 280 - 295
  • [2] ON CONTINUITY OF HOMOMORPHISMS BETWEEN TOPOLOGICAL CLIFFORD SEMIGROUPS
    Pastukhova, I
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (01) : 123 - 129
  • [3] The continuity of the inversion and the structure of maximal subgroups in countably compact topological semigroups
    O. Gutik
    D. Pagon
    D. Repovš
    Acta Mathematica Hungarica, 2009, 124 : 201 - 214
  • [4] THE CONTINUITY OF THE INVERSION AND THE STRUCTURE OF MAXIMAL SUBGROUPS IN COUNTABLY COMPACT TOPOLOGICAL SEMIGROUPS
    Gutik, O.
    Pagon, D.
    Repovs, D.
    ACTA MATHEMATICA HUNGARICA, 2009, 124 (03) : 201 - 214
  • [5] Topological Groups of Bounded Homomorphisms on a Topological Group
    Kocinac, Ljubisa D. R.
    Zabeti, Omid
    FILOMAT, 2016, 30 (03) : 541 - 546
  • [6] Topological inverse semigroups
    ZHU Yongwen Department of Mathematics and Information Science
    Journal of Chongqing University(English Edition), 2004, (01) : 82 - 85
  • [7] On topological Brandt semigroups
    O. V. Gutik
    K. P. Pavlyk
    A. R. Reiter
    Journal of Mathematical Sciences, 2012, 184 (1) : 1 - 11
  • [8] Extending Homomorphisms of Dense Projective Subplanes by Continuity
    Kummetz R.
    Results in Mathematics, 1999, 35 (3-4) : 276 - 283
  • [9] On topological semigroups of matrix units
    Gutik, OV
    Pavlyk, KP
    SEMIGROUP FORUM, 2005, 71 (03) : 389 - 400
  • [10] Topological semigroups of matrix units
    Gutik, Oleg V.
    Pavlyk, Kateryna P.
    ALGEBRA & DISCRETE MATHEMATICS, 2005, (03): : 1 - 17