Fractional-Order Periodic Maps: Stability Analysis and Application to the Periodic-2 Limit Cycles in the Nonlinear Systems

被引:0
作者
Sachin Bhalekar
Prashant M. Gade
机构
[1] University of Hyderabad,School of Mathematics and Statistics
[2] Rashtrasant Tukadoji Maharaj Nagpur University,Department of Physics
来源
Journal of Nonlinear Science | 2023年 / 33卷
关键词
Fractional order; Periodic map; Stability; 37E05; 39A30; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the stability of periodic map with period-2 in linear fractional difference equations where the function is f(x)=ax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=ax$$\end{document} at even times and f(x)=bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=bx$$\end{document} at odd times. The stability of such a map for an integer order map depends on product ab. The conditions are much complex for fractional maps and depend on ab as well as a+b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+b$$\end{document}. There are no superstable period-2 orbits. These conditions are useful in obtaining stability conditions of asymptotically periodic orbits with period-2 in the nonlinear case. The stability conditions are demonstrated numerically. The formalism can be generalized to higher periods.
引用
收藏
相关论文
共 90 条
[1]  
Atıcı FM(2007)A transform method in discrete fractional calculus Int. J. Diff. Equ. 2 165-176
[2]  
Eloe PW(2009)Initial value problems in discrete fractional calculus Proc. Am. Math. Soc. 137 981-989
[3]  
Atıcı F(2011)Two-point boundary value problems for finite fractional difference equations J. Diff. Equ. Appl. 17 445-456
[4]  
Eloe P(2010)Modeling with fractional difference equations J. Math. Anal. Appl. 369 1-9
[5]  
Atıcı FM(2011)Discrete-time fractional variational problems Signal Process. 91 513-524
[6]  
Eloe PW(2018)Singular points in the solution trajectories of fractional order dynamical systems Chaos Interdiscip. J. Nonlinear Sci. 28 2729-2732
[7]  
Atıcı FM(2022)Stability and dynamics of complex order fractional difference equations Chaos, Solitons & Fractals 158 1-10
[8]  
Şengül S(1988)Invariant measurement of strange sets in terms of cycles Phys. Rev. Lett. 61 2829-2841
[9]  
Bastos NR(2020)Burst mechanisms and burst synchronization in a system of coupled type-i and type-ii neurons Commun. Nonlinear Sci. Numer. Simul. 90 10247-10254
[10]  
Ferreira RA(2016)Chaos in discrete fractional difference equations Pramana 87 110-121