The weak solutions of a doubly nonlinear parabolic equation related to the p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian

被引:0
作者
Huashui Zhan
机构
[1] Xiamen University of Technology,School of Applied Mathematics
[2] Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety,undefined
关键词
-Laplacian; The initial-boundary value problem; Stability; 35K55; 35K92; 35K85; 35R35;
D O I
10.1186/s13662-019-2400-1
中图分类号
学科分类号
摘要
A nonlinear degenerate parabolic equation related to the p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian ut=div(b(x)|∇a(u)|p(x)−2∇a(u))+∑i=1N∂bi(u)∂xi+c(x,t)−b0a(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {u_{t}}= \operatorname{div} \bigl({b(x)} { \bigl\vert {\nabla a(u)} \bigr\vert ^{p(x) - 2}}\nabla a(u) \bigr)+\sum _{i=1}^{N}\frac{\partial b_{i}(u)}{ \partial x_{i}}+c(x,t) -b_{0}a(u) $$\end{document} is considered in this paper, where b(x)|x∈Ω>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b(x)|_{x\in \varOmega }>0$\end{document}, b(x)|x∈∂Ω=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b(x)|_{x \in \partial \varOmega }=0$\end{document}, a(s)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(s)\geq 0$\end{document} is a strictly increasing function with a(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(0)=0$\end{document}, c(x,t)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c(x,t)\geq 0$\end{document} and b0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_{0}>0$\end{document}. If ∫Ωb(x)−1p−−1dx≤c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\varOmega }b(x)^{-\frac{1}{p ^{-}-1}}\,dx\leq c$\end{document} and |∑i=1Nbi′(s)|≤ca′(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert \sum_{i=1}^{N}b_{i}'(s) \vert \leq c a'(s)$\end{document}, then the solutions of the initial-boundary value problem is well-posedness. When ∫Ωb(x)−(p(x)−1)dx<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\varOmega }b(x)^{-(p(x)-1)}\,dx<\infty $\end{document}, without the boundary value condition, the stability of weak solutions can be proved.
引用
收藏
相关论文
共 55 条
[1]  
Acerbi E.(2002)Regularity results for stationary electro-rheological fluids Arch. Ration. Mech. Anal. 164 213-259
[2]  
Mingione G.(2006)On stationary thermo-rheological viscous flows Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 52 19-36
[3]  
Antontsev S.(2001)Mathematical modelling of electro-rheological fluids Contin. Mech. Thermodyn. 13 59-78
[4]  
Rodrigues J.F.(2008)New diffusion models in image processing Comput. Math. Appl. 56 874-882
[5]  
Rajagopal K.(2015)Singular phenomena of solutions for nonlinear diffusion equations involving Z. Angew. Math. Phys. 66 989-1005
[6]  
Ruzicka M.(2013)-Laplace operator and nonlinear source Commun. Pure Appl. Anal. 12 1527-1546
[7]  
Aboulaich R.(2016)Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions Bound. Value Probl. 2016 383-409
[8]  
Meskine D.(2019)Existence, uniqueness, and nonexistence of solution to nonlinear diffusion equations with Nonlinear Anal., Real World Appl. 48 374-384
[9]  
Souissi A.(2011)-Laplacian operator J. Math. Anal. Appl. 374 1383-1406
[10]  
Guo B.(2013)A nonlinear diffusion problem with convection and anisotropic nonstandard growth conditions Bound. Value Probl. 2013 389-411