Taking tilting modules from the poset of support tilting modules

被引:0
|
作者
Ryoichi Kase
机构
[1] Nara Women’s University,Department of Mathematics
来源
Mathematische Zeitschrift | 2015年 / 280卷
关键词
Tilting modules; Tilting mutations; Representations of quivers; 16G20; 16D80; 06A07;
D O I
暂无
中图分类号
学科分类号
摘要
C. Ingalls and H. Thomas defined support tilting modules for path algebras. From τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-tilting theory introduced by T. Adachi, O. Iyama and I. Reiten, a partial order on the set of basic tilting modules defined by D. Happel and L. Unger is extended as a partial order on the set of support tilting modules. In this paper, we study a combinatorial relationship between the poset of basic tilting modules and basic support tilting modules. We will show that the subposet of tilting modules is uniquely determined by the poset structure of the set of support tilting modules.
引用
收藏
页码:893 / 904
页数:11
相关论文
共 50 条
  • [1] Taking tilting modules from the poset of support tilting modules
    Kase, Ryoichi
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (3-4) : 893 - 904
  • [2] Distributive lattices and the poset of pre-projective tilting modules
    Kase, Ryoichi
    JOURNAL OF ALGEBRA, 2014, 415 : 264 - 289
  • [3] Tilting Modules and Support τ-Tilting Modules over Preprojective Algebras Associated with Symmetrizable Cartan Matrices
    Changjian Fu
    Shengfei Geng
    Algebras and Representation Theory, 2019, 22 : 1239 - 1260
  • [4] On the combinatorics of the set of tilting modules
    Unger, Luise
    RECENT DEVELOPMENTS IN REPRESENTATION THEORY, 2016, 673 : 227 - 249
  • [5] G-stable support τ-tilting modules
    Yingying Zhang
    Zhaoyong Huang
    Frontiers of Mathematics in China, 2016, 11 : 1057 - 1077
  • [6] RIGIDITY OF TILTING MODULES
    Andersen, Henning Haahr
    Kaneda, Masaharu
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (01) : 1 - 39
  • [7] LIMITS OF TILTING MODULES
    Braga, Clezio A.
    Coelho, Flavio U.
    COLLOQUIUM MATHEMATICUM, 2009, 115 (02) : 207 - 217
  • [8] Split-by-Nilpotent Extensions and Support τ-Tilting Modules
    Pamela Suarez
    Algebras and Representation Theory, 2020, 23 : 2295 - 2313
  • [9] On a partial order of tilting modules
    Happel, D
    Unger, L
    ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (02) : 147 - 156
  • [10] Dominant dimension and tilting modules
    Van C. Nguyen
    Idun Reiten
    Gordana Todorov
    Shijie Zhu
    Mathematische Zeitschrift, 2019, 292 : 947 - 973