Dickson’s lemma and weak Ramsey theory

被引:0
|
作者
Yasuhiko Omata
Florian Pelupessy
机构
[1] Tohoku University,Mathematical Institute
来源
Archive for Mathematical Logic | 2019年 / 58卷
关键词
Reverse mathematics; Ramsey theory; Dickson’s lemma; 03B30; 05C55; 03F30; 03H15;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the connections between Dickson’s lemma and weak Ramsey theory. We show that a weak version of the Paris–Harrington principle for pairs in c colors and miniaturized Dickson’s lemma for c-tuples are equivalent over RCA0∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA}_0^{*}$$\end{document}. Furthermore, we look at a cascade of consequences for several variants of weak Ramsey’s theorem.
引用
收藏
页码:413 / 425
页数:12
相关论文
共 50 条
  • [31] Choiceless Ramsey Theory of Linear Orders
    Luecke, Philipp
    Schlicht, Philipp
    Weinert, Thilo
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2017, 34 (03): : 369 - 418
  • [32] Amenability and Ramsey theory in the metric setting
    Kaichouh, Adriane
    FUNDAMENTA MATHEMATICAE, 2015, 231 (01) : 19 - 38
  • [33] Exponential patterns in arithmetic Ramsey theory
    Sahasrabudhe, Julian
    ACTA ARITHMETICA, 2018, 182 (01) : 13 - 42
  • [34] Rainbow Generalizations of Ramsey Theory: A Survey
    Fujita, Shinya
    Magnant, Colton
    Ozeki, Kenta
    GRAPHS AND COMBINATORICS, 2010, 26 (01) : 1 - 30
  • [35] Rainbow Generalizations of Ramsey Theory: A Survey
    Shinya Fujita
    Colton Magnant
    Kenta Ozeki
    Graphs and Combinatorics, 2010, 26 : 1 - 30
  • [36] Transitive sets in Euclidean Ramsey theory
    Leader, Imre
    Russell, Paul A.
    Walters, Mark
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (02) : 382 - 396
  • [37] On generalized Ramsey theory:: The bipartite case
    Axenovich, M
    Füredi, Z
    Mubayi, D
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (01) : 66 - 86
  • [38] Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem
    Solecki, Slawomir
    ADVANCES IN MATHEMATICS, 2013, 248 : 1156 - 1198
  • [39] Rothberger bounded groups and Ramsey theory
    Scheepers, Marion
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (13) : 1575 - 1583
  • [40] Discordant sets and ergodic Ramsey theory
    Bergelson, Vitaly
    Huryn, Jake
    Raghavan, Rushil
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (01): : 89 - 130