Dickson’s lemma and weak Ramsey theory

被引:0
作者
Yasuhiko Omata
Florian Pelupessy
机构
[1] Tohoku University,Mathematical Institute
来源
Archive for Mathematical Logic | 2019年 / 58卷
关键词
Reverse mathematics; Ramsey theory; Dickson’s lemma; 03B30; 05C55; 03F30; 03H15;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the connections between Dickson’s lemma and weak Ramsey theory. We show that a weak version of the Paris–Harrington principle for pairs in c colors and miniaturized Dickson’s lemma for c-tuples are equivalent over RCA0∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA}_0^{*}$$\end{document}. Furthermore, we look at a cascade of consequences for several variants of weak Ramsey’s theorem.
引用
收藏
页码:413 / 425
页数:12
相关论文
共 23 条
[1]  
Carlucci L(2011)Sharp thresholds for hypergraph regressive Ramsey numbers J. Comb. Theory Ser. A 118 558-585
[2]  
Lee G(1981)Some bounds for the Ramsey–Paris–Harrington numbers J. Comb. Theory Ser. A 30 53-70
[3]  
Weiermann A(2016)Independence of Ramsey theorem variants using Proc. Am. Math. Soc. 144 853-860
[4]  
Erdös P(1899)Neuer Beweis des Hilbertschen Satzes über homogene Funktionen Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1899 240-242
[5]  
Mills G(2012)Phase transitions of iterated Higman-style well-partial-orderings Arch. Math. Log. 51 127-161
[6]  
Friedman H(1981)Rapidly growing Ramsey functions Ann. Math. 113 267-314
[7]  
Pelupessy F(2016)On principles between J. Math. Log. 16 1650004-51
[8]  
Gordan P(1970)- and Archiv für mathematische Logik und Grundlagenforschung 13 39-974
[9]  
Gordeev L(1988)-induction, and monotone enumerations J. Symb. Log. 53 961-306
[10]  
Weiermann A(1986)Hierarchies of number-theoretic functions. I Ann. Pure Appl. Log. 31 289-1241