Analysis of Waves at Boundary Surfaces at Distinct Media with Nonlocal Dual-Phase-Lag

被引:0
|
作者
Rajesh Kumar
Vipin Gupta
Vijayata Pathania
Rajneesh Kumar
M. S. Barak
机构
[1] Indira Gandhi University Meerpur,
[2] Himachal Pradesh University Regional Centre,undefined
[3] Kurukshetra University,undefined
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2023年 / 93卷
关键词
Double porosity; Thermoelastic; Nonlocal; Dual-phase-lag; Inviscid liquid;
D O I
暂无
中图分类号
学科分类号
摘要
This study discusses the behavior of plane waves in a double porous thermoelastic with nonlocal dual-phase-lag solid half-space (M1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M_{1} )$$\end{document} in contact with inviscid liquid half-space (M2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M_{2} )$$\end{document}. The governing equations are expressed in two-dimensional form, and normal mode analysis is adopted to solve the problem for further investigation. It has been found that there exist four coupled longitudinal, one transverse wave in the medium M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document}, and one mechanical wave in the medium M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document}. These waves are under the influence of parameters of nonlocal dual-phase-lag and double porosity. Secular equations are determined by applying interfacial mechanical and thermal conditions. The compact form of wave characteristics like phase velocity, attenuation coefficient, penetrating depth, and specific loss is obtained. The component of displacement, temperature change, and volume fraction fields in the medium M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document}, along with normal velocity and acoustic pressure in the medium, M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document} are obtained in closed form. Numerically simulated results are displayed in the form of graphs to depict the behavior of nonlocal and phase lag on basic characteristics of waves.
引用
收藏
页码:573 / 585
页数:12
相关论文
共 50 条
  • [1] Analysis of Waves at Boundary Surfaces at Distinct Media with Nonlocal Dual-Phase-Lag
    Kumar, Rajesh
    Gupta, Vipin
    Pathania, Vijayata
    Kumar, Rajneesh
    Barak, M. S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2023,
  • [2] Analysis of Waves at Boundary Surfaces at Distinct Media with Nonlocal Dual-Phase-Lag
    Kumar, Rajesh
    Gupta, Vipin
    Pathania, Vijayata
    Kumar, Rajneesh
    Barak, M. S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2023, 93 (04) : 573 - 585
  • [3] Waves in dual-phase-lag thermoelastic materials with voids based on Eringen's nonlocal elasticity
    Mondal, Sudip
    Sarkar, Nihar
    Sarkar, Nantu
    JOURNAL OF THERMAL STRESSES, 2019, 42 (08) : 1035 - 1050
  • [4] Numerical analysis of a dual-phase-lag model with microtemperatures
    Bazarra, N.
    Copetti, M. I. M.
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 1 - 25
  • [5] Harmonic waves solution in dual-phase-lag magneto-thermoelasticity
    Rafiq, Muhammad
    Singh, Baljeet
    Arifa, Samreen
    Nazeer, Muhammad
    Usman, Muhammad
    Arif, Shoaib
    Bibi, Mairaj
    Jahangir, Adnan
    OPEN PHYSICS, 2019, 17 (01): : 8 - 15
  • [6] Numerical analysis of some dual-phase-lag models
    Bazarra, N.
    Copetti, M. I. M.
    Fernandez, J. R.
    Quintanilla, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (02) : 407 - 426
  • [7] Effect of dual-phase-lag model on the vibration analysis of nonlocal generalized thermoelastic diffusive hollow sphere
    Sharma, Dinesh Kumar
    Thakur, Dinesh
    Sarkar, Nantu
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022, 32 (04) : 1626 - 1643
  • [8] Propagation of plane waves at the initially stressed surface of an orthotropic nonlocal rotating half space under dual-phase-lag model
    Boora, Kirti
    Deswal, Sunita
    Kalkal, Kapil Kumar
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2024, 20 (04) : 617 - 635
  • [9] Numerical analysis of dual-phase-lag heat transfer in a layered cylinder with nonlinear interface boundary conditions
    Liu, Kuo-Chi
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (03) : 307 - 314
  • [10] Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction
    Bazarra, N.
    Campo, M.
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 76 - 90