Chromoelectric field correlator for quarkonium transport in the strongly coupled N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Yang-Mills plasma from AdS/CFT

被引:0
作者
Govert Nijs
Bruno Scheihing-Hitschfeld
Xiaojun Yao
机构
[1] Massachusetts Institute of Technology,Center for Theoretical Physics
[2] University of Washington,InQubator for Quantum Simulation, Department of Physics
关键词
Finite Temperature or Finite Density; Quark-Gluon Plasma; AdS-CFT Correspondence; Quarkonium;
D O I
10.1007/JHEP06(2023)007
中图分类号
学科分类号
摘要
Previous studies have shown that a gauge-invariant correlation function of two chromoelectric fields connected by a straight timelike adjoint Wilson line encodes crucial information about quark-gluon plasma (QGP) that determines the dynamics of small-sized quarkonium in the medium. Motivated by the successes of holographic calculations to describe strongly coupled QGP, we calculate the analog gauge-invariant correlation function in strongly coupled N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric Yang-Mills theory at finite temperature by using the AdS/CFT correspondence. Our results indicate that the transition processes between bound and unbound quarkonium states are suppressed in strongly coupled plasmas, and moreover, the leading contributions to these transition processes vanish in both the quantum Brownian motion and quantum optical limits of open quantum system approaches to quarkonia.
引用
收藏
相关论文
共 174 条
  • [1] Beraudo A(2008) × Nucl. Phys. A 806 312-undefined
  • [2] Blaizot J-P(2008)undefined Phys. Rev. D 78 038-undefined
  • [3] Ratti C(2010)undefined JHEP 09 116-undefined
  • [4] Brambilla N(2011)undefined JHEP 12 130-undefined
  • [5] Ghiglieri J(2013)undefined JHEP 05 085-undefined
  • [6] Vairo A(2019)undefined Phys. Rev. D 100 49-undefined
  • [7] Petreczky P(2012)undefined Phys. Rev. D 85 034-undefined
  • [8] Brambilla N(2013)undefined Phys. Rev. D 87 029-undefined
  • [9] Brambilla N(2014)undefined JHEP 04 136-undefined
  • [10] Escobedo MA(2015)undefined Phys. Rev. D 91 303-undefined