On higher moments of Hecke eigenvalues attached to cusp forms

被引:0
作者
Guodong Hua
机构
[1] Weinan Normal University,School of Mathematics and Statistics
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
Hecke eigenform; Fourier coefficient; Rankin-Selberg ; -function; 11F11; 11F30; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f, g and h be three distinct primitive holomorphic cusp forms of even integral weights k1, k2 and k3 for the full modular group Γ = SL(2, ℤ), respectively, and let λf(n), λg(n) and λh(n) denote the nth normalized Fourier coefficients of f, g and h, respectively. We consider the cancellations of sums related to arithmetic functions λg(n), λh(n) twisted by λf(n) and establish the following results: ∑n≼xλf(n)λg(n)iλh(n)j≪f,g,h,εx1−1/2i+j+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{n \leqslant x} {{\lambda _f}\left( n \right)} {\lambda _g}{\left( n \right)^i}{\lambda _h}{\left( n \right)^j}{ \ll _{f,g,h,\varepsilon }}{x^{1 - 1/{2^{i + j}} + \varepsilon }}$$\end{document} for any ε > 0, where 1 ≼ i ≼ 2, j ≼ 5 are any fixed positive integers.
引用
收藏
页码:1055 / 1064
页数:9
相关论文
共 50 条
[41]   The average value of Fourier coefficients of cusp forms in arithmetic progressions [J].
Lue, Guangshi .
JOURNAL OF NUMBER THEORY, 2009, 129 (02) :488-494
[42]   SIGN CHANGES AND NONVANISHING OF FOURIER COEFFICIENTS OF HOLOMORPHIC CUSP FORMS [J].
Lao, Huixue ;
Luo, Shu .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) :1701-1714
[43]   Fourier coefficients of cusp forms and automorphic F-functions [J].
Fomenko O.M. .
Journal of Mathematical Sciences, 1999, 95 (3) :2295-2316
[44]   On the growth of Fourier coefficients of certain special Siegel cusp forms [J].
Winfried Kohnen .
Mathematische Zeitschrift, 2004, 248 :345-350
[45]   An analogue of the Bombieri–Vinogradov Theorem for Fourier coefficients of cusp forms [J].
Ratnadeep Acharya .
Mathematische Zeitschrift, 2018, 288 :23-37
[46]   CHARACTERIZING ADELIC HILBERT MODULAR CUSP FORMS BY COEFFICIENT SIZE [J].
Linowitz, Benjamin .
KYUSHU JOURNAL OF MATHEMATICS, 2014, 68 (01) :105-111
[47]   On the sign changes and non-vanishing of Hecke eigenvalues associated to symmetric power L-Functions [J].
Guodong Hua .
The Ramanujan Journal, 2022, 59 :775-789
[48]   The cancellation of Fourier coefficients of cusp forms over different sparse sequences [J].
Hui Xue Lao .
Acta Mathematica Sinica, English Series, 2013, 29 :1963-1972
[49]   High power sums of Fourier coefficients of holomorphic cusp forms and their applications [J].
Hu, Guangwei ;
Lao, Huixue ;
Pan, Huimin .
AIMS MATHEMATICS, 2024, 9 (09) :25166-25183
[50]   On exponential sums involving Fourier coefficients of cusp forms over primes [J].
Hou, Fei .
JOURNAL OF NUMBER THEORY, 2016, 164 :375-404