On higher moments of Hecke eigenvalues attached to cusp forms

被引:0
作者
Guodong Hua
机构
[1] Weinan Normal University,School of Mathematics and Statistics
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
Hecke eigenform; Fourier coefficient; Rankin-Selberg ; -function; 11F11; 11F30; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f, g and h be three distinct primitive holomorphic cusp forms of even integral weights k1, k2 and k3 for the full modular group Γ = SL(2, ℤ), respectively, and let λf(n), λg(n) and λh(n) denote the nth normalized Fourier coefficients of f, g and h, respectively. We consider the cancellations of sums related to arithmetic functions λg(n), λh(n) twisted by λf(n) and establish the following results: ∑n≼xλf(n)λg(n)iλh(n)j≪f,g,h,εx1−1/2i+j+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{n \leqslant x} {{\lambda _f}\left( n \right)} {\lambda _g}{\left( n \right)^i}{\lambda _h}{\left( n \right)^j}{ \ll _{f,g,h,\varepsilon }}{x^{1 - 1/{2^{i + j}} + \varepsilon }}$$\end{document} for any ε > 0, where 1 ≼ i ≼ 2, j ≼ 5 are any fixed positive integers.
引用
收藏
页码:1055 / 1064
页数:9
相关论文
共 50 条
[31]   Estimates for fourier coefficients of siegel cusp forms [J].
S. Breulmann .
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1997, 67 :159-164
[32]   An additive problem in the Fourier coefficients of cusp forms [J].
Gergely Harcos .
Mathematische Annalen, 2003, 326 :347-365
[33]   Joint value-distribution of L-functions and discrepancy of Hecke eigenvalues∗ [J].
Hirofumi Nagoshi .
Lithuanian Mathematical Journal, 2016, 56 :325-356
[34]   A remark on the growth of Fourier coefficients of Siegel cusp forms [J].
Winfried Kohnen ;
Riccardo Salvati Manni .
Mathematische Zeitschrift, 1999, 231 :249-252
[35]   A note on signs of Fourier coefficients of two cusp forms [J].
S Banerjee .
Proceedings - Mathematical Sciences, 2018, 128
[36]   On the first sign change of Fourier coefficients of cusp forms [J].
He, Xiaoguang ;
Zhao, Lilu .
JOURNAL OF NUMBER THEORY, 2018, 190 :212-228
[37]   Estimates for fourier coefficients of cusp forms in weight aspect [J].
Hengcai Tang .
Chinese Annals of Mathematics, Series B, 2016, 37 :793-802
[38]   Some results on divisor problems related to cusp forms [J].
Wei Zhang .
The Ramanujan Journal, 2020, 53 :75-83
[39]   Oscillations of Fourier coefficients of cusp forms over primes [J].
Hou, Fei ;
Lu, Guangshi .
JOURNAL OF NUMBER THEORY, 2016, 159 :370-383
[40]   A remark on the growth of Fourier coefficients of Siegel cusp forms [J].
Kohnen, W ;
Manni, RS .
MATHEMATISCHE ZEITSCHRIFT, 1999, 231 (02) :249-252