On higher moments of Hecke eigenvalues attached to cusp forms

被引:0
作者
Guodong Hua
机构
[1] Weinan Normal University,School of Mathematics and Statistics
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
Hecke eigenform; Fourier coefficient; Rankin-Selberg ; -function; 11F11; 11F30; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f, g and h be three distinct primitive holomorphic cusp forms of even integral weights k1, k2 and k3 for the full modular group Γ = SL(2, ℤ), respectively, and let λf(n), λg(n) and λh(n) denote the nth normalized Fourier coefficients of f, g and h, respectively. We consider the cancellations of sums related to arithmetic functions λg(n), λh(n) twisted by λf(n) and establish the following results: ∑n≼xλf(n)λg(n)iλh(n)j≪f,g,h,εx1−1/2i+j+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{n \leqslant x} {{\lambda _f}\left( n \right)} {\lambda _g}{\left( n \right)^i}{\lambda _h}{\left( n \right)^j}{ \ll _{f,g,h,\varepsilon }}{x^{1 - 1/{2^{i + j}} + \varepsilon }}$$\end{document} for any ε > 0, where 1 ≼ i ≼ 2, j ≼ 5 are any fixed positive integers.
引用
收藏
页码:1055 / 1064
页数:9
相关论文
共 50 条
[21]   PARAMODULAR CUSP FORMS [J].
Poor, Cris ;
Yuen, David S. .
MATHEMATICS OF COMPUTATION, 2015, 84 (293) :1401-1438
[22]   ON THE SIMULTANEOUS SIGN CHANGES OF HECKE EIGENVALUES OVER AN INTEGRAL BINARY QUADRATIC FORM [J].
Hua, G. .
ACTA MATHEMATICA HUNGARICA, 2022, 167 (02) :476-491
[23]   ON THE SIMULTANEOUS SIGN CHANGES OF HECKE EIGENVALUES OVER AN INTEGRAL BINARY QUADRATIC FORM [J].
G. HUA .
Acta Mathematica Hungarica, 2022, 167 :476-491
[24]   Uniform estimates for sums of Fourier coefficients of cusp forms [J].
G. S. Lü .
Acta Mathematica Hungarica, 2009, 124 :83-97
[25]   On higher moments of Dirichlet coefficients attached to symmetric square L-functions over certain sparse sequence [J].
Guodong Hua ;
Bin Chen ;
Lijing Pan ;
Xiaofang Chen .
Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 :4195-4208
[26]   Shifted convolution sums related to Hecke–Maass forms [J].
Hengcai Tang ;
Jie Wu .
The Ramanujan Journal, 2021, 55 :1083-1104
[27]   Estimates for Fourier coefficients of Siegel cusp forms [J].
Breulmann, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1997, 67 (1) :159-164
[28]   Fourier coefficients of cusp forms on special sequences [J].
Yao, Weili .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (04) :1161-1190
[29]   Sums of Fourier coefficients related to Hecke eigencusp forms [J].
Guangshi Lü ;
Hengcai Tang .
The Ramanujan Journal, 2015, 37 :309-327
[30]   On averages of Fourier coefficients of Maass cusp forms [J].
Guangshi Lü .
Archiv der Mathematik, 2013, 100 :255-265