A Dynamical Uncertainty Principle in von Neumann Algebras by Operator Monotone Functions

被引:0
作者
Paolo Gibilisco
Tommaso Isola
机构
[1] Università di Roma “Tor Vergata”,Dipartimento SEFEMEQ, Facoltà di Economia
[2] Università di Roma “Tor Vergata”,Dipartimento di Matematica
来源
Journal of Statistical Physics | 2008年 / 132卷
关键词
Uncertainty principle; Operator monotone function; Quantum Fisher information;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that A1,…,AN are observables (selfadjoint matrices) and ρ is a state (density matrix). In this case the standard uncertainty principle, proved by Robertson, gives a bound for the quantum generalized variance, namely for det {Cov ρ(Aj,Ak)}, using the commutators [Aj,Ak]; this bound is trivial when N is odd. Recently a different inequality of Robertson-type has been proved by the authors with the help of the theory of operator monotone functions. In this case the bound makes use of the commutators [ρ,Aj] and is non-trivial for any N. In the present paper we generalize this new result to the von Neumann algebra case. Nevertheless the proof appears to simplify all the existing ones.
引用
收藏
页码:937 / 944
页数:7
相关论文
共 39 条
[1]  
Andai A.(2008)Uncertainty principle with quantum Fisher information J. Math. Phys. 49 012106-901
[2]  
Daoud M.(2006)Representations and properties of generalized J. Phys. A Math. Gen. 39 889-696
[3]  
Dodonov A.V.(2005) statistics, coherent states and Robertson uncertainty relations J. Phys. A Math. Gen. 38 683-159
[4]  
Dodonov V.V.(2007)Separability dynamics of two-mode Gaussian states in parametric conversion and amplification Ann. Inst. Stat. Math 59 147-133
[5]  
Mizrahi S.S.(2008)Uncertainty principle and quantum Fisher information Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 127-559
[6]  
Gibilisco P.(2007)Uncertainty principle for Wigner-Yanase-Dyson information in semifinite von Neumann algebras J. Math. Phys. 48 072109-1724
[7]  
Isola T.(2008)Uncertainty principle and quantum Fisher information, II J. Stat. Phys. 130 545-645
[8]  
Gibilisco P.(2008)A volume inequality for quantum Fisher information and the uncertainty principle Linear Algebra Appl. 428 1706-251
[9]  
Isola T.(2006)A Robertson-type uncertainty principle and quantum Fisher information Found. Phys. Lett. 19 501-1782
[10]  
Gibilisco P.(2005)Born reciprocity and the granularity of spacetime Int. J. Math. 16 629-1576