The Annihilating-Ideal Graph of an Idealization

被引:0
作者
M. Ahrari
Sh. A. Safari Sabet
B. Amini
机构
[1] Islamic Azad University,Department of Mathematics
[2] Central Tehran Branch,Department of Mathematics, College of Sciences
[3] Shiraz University,undefined
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2017年 / 41卷
关键词
Annihilating-ideal graph; Idealization; Girth; Diameter; 05C75; 13A15; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
The annihilating-ideal graph of a commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} is denoted by AG(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{AG}}(R)$$\end{document}, whose vertices are all nonzero ideals of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} with nonzero annihilators and two distinct vertices I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I$$\end{document} and J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} are adjacent if and only if IJ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$IJ = 0$$\end{document}. In this paper, we consider the annihilating-ideal graphs of idealizations of commutative rings. We study the behavior of the girth and diameter of the annihilating-ideal graph of a commutative ring when extending to idealizations of the ring.
引用
收藏
页码:165 / 168
页数:3
相关论文
共 5 条
  • [1] Behboodi M(2011)The annihilating-ideal graph of commutative rings I J Algebra Appl 10 727-739
  • [2] Rakeei Z(2011)The annihilating-ideal graph of commutative rings II J Algebra Appl 10 741-753
  • [3] Behboodi M(2006)The diameter of a zero divisor graph J Algebra 301 174-193
  • [4] Rakeei Z(undefined)undefined undefined undefined undefined-undefined
  • [5] Lucas TG(undefined)undefined undefined undefined undefined-undefined