An approximation algorithm for the k-level facility location problem with outliers

被引:0
作者
Lu Han
Dachuan Xu
Dandan Liu
Chenchen Wu
机构
[1] Beijing University of Technology,Department of Operations Research and Information Engineering
[2] Tianjin University of Technology,College of Science
来源
Optimization Letters | 2021年 / 15卷
关键词
Facility location problem; Outliers; Approximation algorithm; Primal-dual;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the k-level facility location problem with outliers (k-LFLPWO), which is an extension of the well-known k-level facility location problem (k-LFLP). In the k-LFLPWO, we are given k facility location sets, a client location set of cardinality n and a non-negative integer q<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<n$$\end{document}. Every facility location set has a different level which belongs to {1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2,\ldots , k\}$$\end{document}. For any facility location, there is an opening cost. For any two locations, there is a connecting cost. We wish to connect at least n-q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-q$$\end{document} clients to opened facilities from level 1 to level k, such that the total cost including opening costs and connecting costs is minimized. Our main contribution is to present a 6-approximation algorithm, which is based on the technique of primal-dual, for the k-LFLPWO.
引用
收藏
页码:2053 / 2065
页数:12
相关论文
共 46 条
[1]  
Aardal KI(1999)A 3-approximation algorithm for the Inf. Process. Lett. 72 161-167
[2]  
Chudak FA(2004)-level uncapacitated facility location problem SIAM J. Comput. 33 544-562
[3]  
Shmoys DB(2010)Local search heuristics for SIAM J. Comput. 39 2212-2231
[4]  
Arya V(2016)-median and facility location problems Theory Comput. Syst. 58 19-44
[5]  
Garg N(2005)An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem SIAM J. Comput. 34 803-824
[6]  
Khandekar R(2003)Improved approximation algorithm for SIAM J. Comput. 33 1-25
[7]  
Meyerson A(1999)-level uncapacitated facility location problem (with penalties) J. Algorithms 31 228-248
[8]  
Munagala K(1963)Improved combinatorial algorithms for facility location problems Manag. Sci. 9 643-666
[9]  
Pandit V(2003)Improved approximation algorithms for the uncapacitated facility location problem J. ACM 50 795-824
[10]  
Byrka J(2001)Greedy strikes back: improved facility location algorithms J. ACM 48 274-296