Learning multi-task local metrics for image annotation

被引:0
|
作者
Xing Xu
Atsushi Shimada
Hajime Nagahara
Rin-ichiro Taniguchi
机构
[1] Kyushu University,Department of Advanced Information and Technology
来源
Multimedia Tools and Applications | 2016年 / 75卷
关键词
Image annotation; Label prediction; Metric learning; Local metric; Multi-task learning;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of image annotation is to automatically assign a set of textual labels to an image to describe the visual contents thereof. Recently, with the rapid increase in the number of web images, nearest neighbor (NN) based methods have become more attractive and have shown exciting results for image annotation. One of the key challenges of these methods is to define an appropriate similarity measure between images for neighbor selection. Several distance metric learning (DML) algorithms derived from traditional image classification problems have been applied to annotation tasks. However, a fundamental limitation of applying DML to image annotation is that it learns a single global distance metric over the entire image collection and measures the distance between image pairs in the image-level. For multi-label annotation problems, it may be more reasonable to measure similarity of image pairs in the label-level. In this paper, we develop a novel label prediction scheme utilizing multiple label-specific local metrics for label-level similarity measure, and propose two different local metric learning methods in a multi-task learning (MTL) framework. Extensive experimental results on two challenging annotation datasets demonstrate that 1) utilizing multiple local distance metrics to learn label-level distances is superior to using a single global metric in label prediction, and 2) the proposed methods using the MTL framework to learn multiple local metrics simultaneously can model the commonalities of labels, thereby facilitating label prediction results to achieve state-of-the-art annotation performance.
引用
收藏
页码:2203 / 2231
页数:28
相关论文
共 50 条
  • [31] Multi-task deep learning for medical image computing and analysis: A review
    Zhao, Yan
    Wang, Xiuying
    Che, Tongtong
    Bao, Guoqing
    Li, Shuyu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [32] Blind image quality assessment based on progressive multi-task learning
    Li, Aobo
    Wu, Jinjian
    Tian, Shiwei
    Li, Leida
    Dong, Weisheng
    Shi, Guangming
    NEUROCOMPUTING, 2022, 500 (307-318) : 307 - 318
  • [33] Efficient Image Gallery Representations at Scale Through Multi-Task Learning
    Gutelman, Benjamin
    Levin, Pavel
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2281 - 2287
  • [34] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [35] Multi-Task Multi-Sample Learning
    Aytar, Yusuf
    Zisserman, Andrew
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 78 - 91
  • [36] Learning Tree Structure in Multi-Task Learning
    Han, Lei
    Zhang, Yu
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 397 - 406
  • [37] Multi-task Learning with Modular Reinforcement Learning
    Xue, Jianyong
    Alexandre, Frederic
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 127 - 138
  • [38] Towards generalizable and robust image tampering localization with multi-task learning and contrastive learning
    Li, Haodong
    Zhuang, Peiyu
    Su, Yang
    Huang, Jiwu
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 270
  • [39] Multi-task Learning Model for Detecting Internet Slang Words with Two-Layer Annotation
    Seki, Yohei
    Liu, Yihong
    2022 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2022), 2022, : 212 - 218
  • [40] A multi-task framework for metric learning with common subspace
    Yang, Peipei
    Huang, Kaizhu
    Liu, Cheng-Lin
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (7-8) : 1337 - 1347