Notes on Univalent Functions with Quasiconformal Extensions

被引:0
作者
Shen Y.L. [1 ]
机构
[1] Department of Mathematics, Suzhou University
基金
中国国家自然科学基金;
关键词
Quasicircle; Quasiconformal mapping; Univalent function;
D O I
10.1007/s101149900016
中图分类号
学科分类号
摘要
We make improvements to some of the constants concerned with univalent functions with quasiconformal extensions that have appeared in the literature.
引用
收藏
页码:397 / 402
页数:5
相关论文
共 11 条
  • [1] Bazilevic I.E., On a criterion of univalence of regular functions and the disposition of their coefficients, Math. USSR-Sb, 3, pp. 123-137, (1967)
  • [2] Zuravlev I.V., Some sufficient conditions for the quasiconformal extension of analytic functions, Soviet Math. Dokl., 19, pp. 1549-1552, (1978)
  • [3] Anderson J.M., Hinkkanen A., Univalent functions and domains bounded by quasicircles, J. London Math. Soc., 25, pp. 253-260, (1982)
  • [4] Ahlfors L.V., Weill G., A uniqueness theorem for Beltrami differentials, Proc. Amer. Math. Soc., 13, pp. 975-978, (1962)
  • [5] Ahlfors L.V., Quasiconformal reflections, Acta Math., 109, pp. 291-301, (1963)
  • [6] Gehring F.W., Univalent functions and the Schwarzian derivative, Comment Math. Helv., 52, pp. 561-572, (1977)
  • [7] Bers L., Royden H.L., Holomorphic families of injections, Acta Math., 157, pp. 259-286, (1986)
  • [8] Lehto O., Univalent Functions and Teichmüller Spaces, (1987)
  • [9] Harmelin R., Bergman kernel functions and univalent criteria, J. d'Analyse Math., 41, pp. 249-258, (1982)
  • [10] Yang S., Conformal invariants of smooth domains and extremal quasiconformal mappings of ellipses, Illinois J. of Math., 41, pp. 438-452, (1997)