Existence of infinitely many solutions for double phase problem with sign-changing potential

被引:0
作者
Bin Ge
Zhi-Yuan Chen
机构
[1] Harbin Engineering University,School of Mathematical Sciences
[2] Harbin Engineering University,College of Computer Science and Technology
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2019年 / 113卷
关键词
Double phase problem; Variational method; Multiple solutions; Sign-changing potential; 35J60; 03H10; 35D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence of infinitely many solutions for the following double phase problem -div(|∇u|p-2∇u+a(x)|∇u|q-2∇u)=f(x,u),inΩ,u=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\mathrm{div}(|\nabla u|^{p-2}\nabla u+a(x)|\nabla u|^{q-2}\nabla u)= f(x,u),&{}\hbox {in }\;\Omega , \\ u=0, &{}\hbox {on }\;\partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} and 1<p<q<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<q<N$$\end{document}. Based on a direct sum decomposition of a space W01,H(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_0^{1,H}(\Omega )$$\end{document}, we prove that the above problem possesses multiple solutions under mild assumptions on a and f. The primitive of the nonlinearity f is of super-q growth near infinity in u and allowed to be sign-changing. Furthermore, our assumptions are suitable and different from those studied previously.
引用
收藏
页码:3185 / 3196
页数:11
相关论文
共 21 条
[1]  
Cherfils L(2005)On the stationary solutions of generalized reaction diffusion equations with Commun. Pure Appl. Anal. 4 9-22
[2]  
Il’yasov V(2013)-Laplacian J. Math. Pures Appl. 100 535-563
[3]  
Bögelein V(2016)Parabolic equations with Manuscr. Math. 151 87-112
[4]  
Duzaar F(1986)-growth Izv. Akad. Nauk SSSR Ser. Mat. 50 675-710
[5]  
Marcellini P(1995)Existence of weak solutions of parabolic systems with Russ. J. Math. Phys. 3 249-269
[6]  
Singer T(1997)-growth Russ. J. Math. Phys. 5 105-116
[7]  
Zhikov VV(2018)Averaging of functionals of the calculus of variations and elasticity theory J. Differ. Equ. 265 4311-4334
[8]  
Zhikov VV(2009)On Lavrentiev’s phenomenon Nonlinear Anal. 70 1275-1287
[9]  
Zhikov VV(2016)On some variational problems Ann. Mat. Pura Appl. 195 1917-1959
[10]  
Liu WL(2014)Existence and multiplicity results for double phase problem Bull. Belg. Math. Soc. Simon Stevin 21 787-811