Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

被引:0
作者
Fedor V. Fomin
Daniel Lokshtanov
Fahad Panolan
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,Department of Informatics
[2] University of California,The Institute of Mathematical Sciences
[3] HBNI,undefined
[4] Ben-Gurion University of the Negev,undefined
来源
Discrete & Computational Geometry | 2019年 / 62卷
关键词
Longest path; Longest cycle; Cycle packing; Feedback vertex set; Unit disk graph; Unit square graph; Parameterized complexity; 68W01; 68W40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We give algorithms with running time 2O(klogk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}({\sqrt{k}\log {k}})} \cdot n^{\mathcal {O}(1)}$$\end{document} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G containsa path on exactly/at least k vertices,a cycle on exactly k vertices,a cycle on at least k vertices,a feedback vertex set of size at most k, anda set of k pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2O(k0.75logk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k^{0.75}\log {k})} \cdot n^{\mathcal {O}(1)}$$\end{document}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\mathcal {O}(1)}$$\end{document} and there exists a solution that crosses every separator at most O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\sqrt{k})$$\end{document} times. The running times of our algorithms are optimal up to the logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log {k}$$\end{document} factor in the exponent, assuming the exponential time hypothesis.
引用
收藏
页码:879 / 911
页数:32
相关论文
共 74 条
  • [11] Cygan M(2007)Improved approximation algorithms for geometric set cover Discrete Comput. Geom. 37 43-58
  • [12] Kratsch S(2005)Subexponential parameterized algorithms on graphs of bounded genus and $H$-minor-free graphs J. ACM 52 866-893
  • [13] Nederlof J(2008)The bidimensionality theory and its algorithmic applications Comput. J. 51 292-302
  • [14] Bodlaender HL(2010)Efficient exact algorithms on planar graphs: exploiting sphere cut decompositions Algorithmica 58 790-810
  • [15] Downey RG(2011)Minimum clique partition in unit disk graphs Graphs Combin. 27 399-411
  • [16] Fellows MR(2016)Efficient computation of representative families with applications in parameterized and exact algorithms J. ACM 63 29-1514
  • [17] Hermelin D(1980)Frequency assignment: theory and applications Proc. IEEE 68 1497-85
  • [18] Bodlaender HL(2012)Weighted geometric set cover problems revisited J. Comput. Geom. 3 65-136
  • [19] Drange PG(1985)Approximation schemes for covering and packing problems in image processing and VLSI J. ACM 32 130-378
  • [20] Dregi MS(1973)Algorithm 447: efficient algorithms for graph manipulation Commun. ACM 16 372-274