Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

被引:0
作者
Anureet Saxena
Pierre Bonami
Jon Lee
机构
[1] Axioma Inc.,Laboratoire d’Informatique Fondamentale de Marseille
[2] CNRS-Aix Marseille Universités,undefined
[3] IBM T.J. Watson Research Center,undefined
来源
Mathematical Programming | 2010年 / 124卷
关键词
90C26 Nonconvex programming; global optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y =  xxT. We use the non-convex constraint \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ Y - x x^T \preccurlyeq 0}$$\end{document} to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − xxT with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ Y - x x^T \succcurlyeq 0}$$\end{document} to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.
引用
收藏
页码:383 / 411
页数:28
相关论文
共 54 条
  • [1] Balas E.(1998)Disjunctive programming: properties of the convex hull of feasible points Discrete Appl. Math. 89 3-44
  • [2] Balas E.(1993)A lift-and-project cutting plane algorithm for mixed 0–1 programs Math. Program. 58 295-324
  • [3] Ceria S.(2008)Optimizing over the split closure Math. Program. 113 219-240
  • [4] Cornuéjols G.(1989)Sequential convexification in reverse convex and disjunctive programming Math. Program. 44 337-350
  • [5] Balas E.(2008)An algorithmic framework for convex mixed-integer nonlinear programs Discrete Optim. 5 186-204
  • [6] Saxena A.(2008)A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations Math. Program. 113 259-282
  • [7] Balas E.(2007)Revival of the Gomory cuts in the 1990’s Ann. Oper. Res. 149 63-66
  • [8] Tama J.(1993)Laplacian eigenvalues and the maximum cut problem Math. Program. Ser. A 62 557-574
  • [9] Tind J.(2007)Optimizing over the first Chvátal closure Math. Program. 110 3-20
  • [10] Bonami P.(1995)Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming J. ACM 42 1115-1145