Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India

被引:0
|
作者
A. G. S. Reddy
D. V. Reddy
P. N. Rao
K. Maruthy Prasad
机构
[1] Central Ground Water Board,
[2] National Geophysical Research Institute (CSIR),undefined
来源
关键词
Fluoride; Groundwater; Water–rock interaction; Nalgonda; Hydrogeochemistry;
D O I
暂无
中图分类号
学科分类号
摘要
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2 + , Mg2 + , Na + , K + , CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, Cl − , SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2}$\end{document}, NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, and F − . The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na +  > Ca2 +  > Mg2 +  > K −  among cations and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}\:\,>$\end{document} Cl −  > SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2} >$\end{document} NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-} >$\end{document} F −  among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2 +  and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} takes the place of SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2}$\end{document}. The Modified Piper diagram reflect that the water belong to Ca + 2–Mg + 2–HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} to Na + –HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na +  and K +  in aquatic solution took place with Ca + 2 and Mg + 2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.
引用
收藏
页码:561 / 577
页数:16
相关论文
共 50 条
  • [41] Environmental impact on groundwater of Maheshwaram Watershed, Ranga Reddy district, Andhra Pradesh
    D. Purushotham
    A. Narsing Rao
    M. Ravi Prakash
    Shakeel Ahmed
    G. Ashok Babu
    Journal of the Geological Society of India, 2011, 77 : 539 - 548
  • [42] Electrical resistivity surveys to delineate groundwater potential aquifers in Peddavanka watershed, Anantapur District, Andhra Pradesh, India
    Gowd, SS
    ENVIRONMENTAL GEOLOGY, 2004, 46 (01): : 118 - 131
  • [43] Delineation of groundwater potential zones utilising geospatial techniques in Kadiri watershed of Anantapur district, Andhra Pradesh, India
    Pasupuleti, S.
    Sandilya, D. K.
    Singha, S.
    Singha, S. S.
    Saha, S.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2019, 40 (01): : 61 - 68
  • [44] Groundwater flow modelling of a micro-watershed in the upland area of East Godavari district, Andhra Pradesh, India
    Prasad Y.S.
    Rao Y.R.S.
    Modeling Earth Systems and Environment, 2018, 4 (3) : 1007 - 1019
  • [45] Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
    Rao, N. Subba
    APPLIED WATER SCIENCE, 2018, 8 (01)
  • [46] Hydrochemical characterization of groundwater in around Tirupati Area, Chittoor District, Andhra Pradesh, South India
    Balaji E.
    Nagaraju A.
    Sreedhar Y.
    Thejaswi A.
    Sharifi Z.
    Nagaraju, A. (arveti@yahoo.com), 1600, Springer Verlag (07): : 1203 - 1212
  • [47] Hydrogeological conditions and optimum well discharges in granitic terrain in parts of Nalgonda District, Andhra Pradesh, India
    Reddy, TN
    Raj, P
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 1997, 49 (01) : 61 - 74
  • [48] Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
    N. Subba Rao
    Applied Water Science, 2018, 8
  • [49] QUALITY CHARACTERIZATION OF GROUNDWATER IN KOILSAGAR PROJECT AREA, MAHABUBNAGAR DISTRICT, ANDHRA-PRADESH, INDIA
    RAJU, CS
    GOUD, PVP
    ENVIRONMENTAL GEOLOGY AND WATER SCIENCES, 1990, 16 (02): : 121 - 128
  • [50] Assessment of Water Pollution in Tipparthy Revenue Sub-Division, Nalgonda (District), Andhra Pradesh, India
    Kishore, Medikondu
    Hanumantharao, Y.
    E-JOURNAL OF CHEMISTRY, 2010, 7 : S587 - S593