Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India

被引:0
|
作者
A. G. S. Reddy
D. V. Reddy
P. N. Rao
K. Maruthy Prasad
机构
[1] Central Ground Water Board,
[2] National Geophysical Research Institute (CSIR),undefined
来源
关键词
Fluoride; Groundwater; Water–rock interaction; Nalgonda; Hydrogeochemistry;
D O I
暂无
中图分类号
学科分类号
摘要
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2 + , Mg2 + , Na + , K + , CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, Cl − , SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2}$\end{document}, NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, and F − . The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na +  > Ca2 +  > Mg2 +  > K −  among cations and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}\:\,>$\end{document} Cl −  > SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2} >$\end{document} NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-} >$\end{document} F −  among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2 +  and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} takes the place of SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2}$\end{document}. The Modified Piper diagram reflect that the water belong to Ca + 2–Mg + 2–HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} to Na + –HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na +  and K +  in aquatic solution took place with Ca + 2 and Mg + 2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.
引用
收藏
页码:561 / 577
页数:16
相关论文
共 50 条
  • [21] Principal component and multivariate statistical approach for evaluation of hydrochemical characterization of fluoride-rich groundwater of Shaslar Vagu watershed, Nalgonda District, India
    M. Sudheer Kumar
    Ratnakar Dhakate
    G. Yadagiri
    K. Srinivasa Reddy
    Arabian Journal of Geosciences, 2017, 10
  • [22] Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India
    Rao, N. Subba
    Ravindra, B.
    Wu, Jianhua
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2020, 26 (09): : 2316 - 2348
  • [23] HYDROGEOCHEMICAL EVALUATION OF GROUNDWATER IN CERTAIN PARTS OF VINUKONDA AREA, GUNTUR DISTRICT, ANDHRA PRADESH, SOUTH INDIA
    Nagaraju, Arveti
    Balaji, Etikata
    Thejaswi, Arveti
    FRESENIUS ENVIRONMENTAL BULLETIN, 2016, 25 (05): : 1520 - 1533
  • [24] Geochemical behavior of fluoride-rich groundwater in Markapur, Andhra Pradesh, South India
    Sudarshan, Venkatayogi
    Narsimha, Adimalla
    Das, S. V. G.
    DATA IN BRIEF, 2018, 18 : 87 - 95
  • [25] INCIDENCE OF SIMPLE GOITER IN AREAS OF ENDEMIC FLUOROSIS IN NALGONDA DISTRICT, ANDHRA PRADESH, INDIA
    SISSIQUI, AH
    FLUORIDE OFFICIAL QUARTERLY JOURNAL OF INTERNATIONAL SOCIETY FOR FLUORIDE RESEARCH, 1969, 2 (04): : 200 - &
  • [26] Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India
    Reddy, D. V.
    Nagabhushanam, P.
    Sukhija, B. S.
    Reddy, A. G. S.
    Smedley, P. L.
    CHEMICAL GEOLOGY, 2010, 269 (3-4) : 278 - 289
  • [27] Groundwater quality: focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India
    Rao, NS
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2003, 48 (05): : 835 - 847
  • [28] Spatial and Temporal Variation of Groundwater Level and its Relation to Drainage and Intrusive Rocks in a part of Nalgonda District, Andhra Pradesh, India
    S. P. Rajaveni
    K. Brindha
    R. Rajesh
    L. Elango
    Journal of the Indian Society of Remote Sensing, 2014, 42 : 765 - 776
  • [29] Assessment of environmental radioactive elements in groundwater in parts of Nalgonda district, Andhra Pradesh, South India using scintillation detection methods
    Tirumalesh Keesari
    Hemant V. Mohokar
    Bijay Kumar Sahoo
    G. Mallesh
    Journal of Radioanalytical and Nuclear Chemistry, 2014, 302 : 1391 - 1398
  • [30] Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India
    Rao N.S.
    Rao P.S.
    Dinakar A.
    Rao P.V.N.
    Marghade D.
    Applied Water Science, 2017, 7 (03) : 1467 - 1478