Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India

被引:0
作者
A. G. S. Reddy
D. V. Reddy
P. N. Rao
K. Maruthy Prasad
机构
[1] Central Ground Water Board,
[2] National Geophysical Research Institute (CSIR),undefined
来源
Environmental Monitoring and Assessment | 2010年 / 171卷
关键词
Fluoride; Groundwater; Water–rock interaction; Nalgonda; Hydrogeochemistry;
D O I
暂无
中图分类号
学科分类号
摘要
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2 + , Mg2 + , Na + , K + , CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, Cl − , SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2}$\end{document}, NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document}, and F − . The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na +  > Ca2 +  > Mg2 +  > K −  among cations and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}\:\,>$\end{document} Cl −  > SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2} >$\end{document} NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-} >$\end{document} F −  among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2 +  and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} takes the place of SO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{4}^{-2}$\end{document}. The Modified Piper diagram reflect that the water belong to Ca + 2–Mg + 2–HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} to Na + –HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{3}^{-}$\end{document} facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na +  and K +  in aquatic solution took place with Ca + 2 and Mg + 2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.
引用
收藏
页码:561 / 577
页数:16
相关论文
共 89 条
[1]  
Anil MP(2007)Groundwater quality in Eastern and Southeastern parts of Rajwa Tehsil, Chendrapur district, Maharastra Gondwana Geological Magazine Special 11 119-126
[2]  
Seema MD(1997)Genesis and health implications of fluoriferous groundwater in the upper regions of Ghana Environmental Geology 35 13-24
[3]  
Apambire WM(1985)Relationship of geology, physiography, agriculture land use and ground-water quality in Sourthern Georgia Groundwater GRWAAP 23 627-634
[4]  
Boyle DR(1989)Sodium–calcium ion exchange in the weathering of shales implication for global weathering budgets Geology 17 552-554
[5]  
Michel FA(1999)Occurrence and origin of groundwater fluoride in phreatic zone of Unnao district, Uttar Pradesh Journal of Applied Geochemistry 1 21-26
[6]  
Beck BF(2007)Geochemistry of surface and sub-surface waters of Rewalsar Lake, Mandi district, Himachal Pradesh: Constrains on weathering and erosion Journal of the Geological Society of India 69 1020-1030
[7]  
Asmussen L(1997)Hydrgeochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the Northern Cnihvahvan desert. Trans-Pecos, Texas USA Hydrogeology Journal 10 455-474
[8]  
Leonard R(1970)Mechanisms controlling World’s water chemistry Science 170 1088-1090
[9]  
Cerling TE(1975)Geochemistry and genesis of fluoride containing groundwaters in India Groundwater 13 275-281
[10]  
Pederson BL(1988)Fluoride occurrence in natural waters in India and its significance Bhu-Jal News 3 31-37