A multivariate extreme value theory approach to anomaly clustering and visualization

被引:0
|
作者
Maël Chiapino
Stephan Clémençon
Vincent Feuillard
Anne Sabourin
机构
[1] LTCI,
[2] Télécom Paris,undefined
[3] Institut polytechnique de Paris,undefined
[4] Airbus Central R&T,undefined
[5] AI Research,undefined
来源
Computational Statistics | 2020年 / 35卷
关键词
Anomaly detection; Clustering; Graph-mining; Latent variable analysis; Mixture modelling; Multivariate extreme value theory; Visualization;
D O I
暂无
中图分类号
学科分类号
摘要
In a wide variety of situations, anomalies in the behaviour of a complex system, whose health is monitored through the observation of a random vector X=(X1,…,Xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{X }=(X_1,\; \ldots ,\; X_d)$$\end{document} valued in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, correspond to the simultaneous occurrence of extreme values for certain subgroups α⊂{1,…,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \subset \{1,\; \ldots ,\; d \}$$\end{document} of variables Xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_j$$\end{document}. Under the heavy-tail assumption, which is precisely appropriate for modeling these phenomena, statistical methods relying on multivariate extreme value theory have been developed in the past few years for identifying such events/subgroups. This paper exploits this approach much further by means of a novel mixture model that permits to describe the distribution of extremal observations and where the anomaly type α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is viewed as a latent variable. One may then take advantage of the model by assigning to any extreme point a posterior probability for each anomaly type α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, defining implicitly a similarity measure between anomalies. It is explained at length how the latter permits to cluster extreme observations and obtain an informative planar representation of anomalies using standard graph-mining tools. The relevance and usefulness of the clustering and 2-d visual display thus designed is illustrated on simulated datasets and on real observations as well, in the aeronautics application domain.
引用
收藏
页码:607 / 628
页数:21
相关论文
共 50 条
  • [1] A multivariate extreme value theory approach to anomaly clustering and visualization
    Chiapino, Mael
    Clemencon, Stephan
    Feuillard, Vincent
    Sabourin, Anne
    COMPUTATIONAL STATISTICS, 2020, 35 (02) : 607 - 628
  • [2] Robust Anomaly Detection for Multivariate Data of Spacecraft Through Recurrent Neural Networks and Extreme Value Theory
    Xiang, Gang
    Lin, Ruishi
    IEEE ACCESS, 2021, 9 : 167447 - 167457
  • [3] Extreme value theory for anomaly detection - the GPD classifier
    Vignotto, Edoardo
    Engelke, Sebastian
    EXTREMES, 2020, 23 (04) : 501 - 520
  • [4] Extreme value theory for anomaly detection – the GPD classifier
    Edoardo Vignotto
    Sebastian Engelke
    Extremes, 2020, 23 : 501 - 520
  • [5] Clustering by the Probability Distributions From Extreme Value Theory
    Zheng S.
    Fan K.
    Hou Y.
    Feng J.
    Fu Y.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (02): : 292 - 303
  • [6] Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory
    Yang, Qingshan
    Li, Danyu
    Hui, Yi
    Law, Siu-Seong
    WIND AND STRUCTURES, 2020, 31 (03) : 197 - 207
  • [7] Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology
    Dutfoy, Anne
    Parey, Sylvie
    Roche, Nicolas
    DEPENDENCE MODELING, 2014, 2 (01): : 30 - 48
  • [8] Multivariate Anomaly Detection with Domain Clustering
    Boesel, Frederic
    Schlapfer, Livio
    Pozidis, Haris
    Gusat, Mitch
    PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON CLOUD COMPUTING, SOCC 2023, 2023, : 193 - 199
  • [9] Agglomerative Clustering with Threshold Optimization via Extreme Value Theory
    Li, Chunchun
    Guenther, Manuel
    Dhamija, Akshay Raj
    Cruz, Steve
    Jafarzadeh, Mohsen
    Ahmad, Touqeer
    Boult, Terrance E.
    ALGORITHMS, 2022, 15 (05)
  • [10] An offspring of multivariate extreme value theory: The max-characteristic function
    Falk, Michael
    Stupfler, Gilles
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 85 - 95