Sum Relations of Multiple Zeta Star Values with Even Arguments

被引:0
|
作者
Kwang-Wu Chen
Chan-Liang Chung
机构
[1] University of Taipei,Department of Mathematics
[2] Institute of Mathematics,undefined
[3] Academia Sinica,undefined
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Riemann zeta function; multiple zeta value; alternating multiple zeta values; sum formula; generating functions; infinite series and products; 11M32; 11M06; 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is the presentation of an identity which is closely related to the sum relation involving multiple zeta star values with even arguments. Let E⋆(m,n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\star }(m,n,k)$$\end{document} be the sum of all multiple zeta star values of depth k and weight mn with arguments multiples of m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}. In this paper, we give two formulas for E⋆(2s,n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\star }(2s,n,k)$$\end{document} for s=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1,2,3$$\end{document} and in particular, by comparing the two we obtain a Bernoulli numbers identity. There are corresponding results included in a special kind of alternating multiple zeta values.
引用
收藏
相关论文
共 50 条