Sum Relations of Multiple Zeta Star Values with Even Arguments

被引:0
|
作者
Kwang-Wu Chen
Chan-Liang Chung
机构
[1] University of Taipei,Department of Mathematics
[2] Institute of Mathematics,undefined
[3] Academia Sinica,undefined
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Riemann zeta function; multiple zeta value; alternating multiple zeta values; sum formula; generating functions; infinite series and products; 11M32; 11M06; 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is the presentation of an identity which is closely related to the sum relation involving multiple zeta star values with even arguments. Let E⋆(m,n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\star }(m,n,k)$$\end{document} be the sum of all multiple zeta star values of depth k and weight mn with arguments multiples of m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}. In this paper, we give two formulas for E⋆(2s,n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\star }(2s,n,k)$$\end{document} for s=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1,2,3$$\end{document} and in particular, by comparing the two we obtain a Bernoulli numbers identity. There are corresponding results included in a special kind of alternating multiple zeta values.
引用
收藏
相关论文
共 50 条
  • [1] Sum Relations of Multiple Zeta Star Values with Even Arguments
    Chen, Kwang-Wu
    Chung, Chan-Liang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
  • [2] On restricted sum formulas for multiple zeta values with even arguments
    Marian Genčev
    Archiv der Mathematik, 2016, 107 : 9 - 22
  • [3] On restricted sum formulas for multiple zeta values with even arguments
    Gencev, Marian
    ARCHIV DER MATHEMATIK, 2016, 107 (01) : 9 - 22
  • [4] Sum formulas of multiple zeta values with selected arguments
    Eie, Minking
    Lee, Tung-Yang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (10) : 2617 - 2630
  • [5] NOTE ON RELATIONS AMONG MULTIPLE ZETA(-STAR) VALUES
    Igarashi, Masahiro
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 710 - 756
  • [6] Sum Relations from Shuffle Products of Alternating Multiple Zeta Values
    Chen, Kwang-Wu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [7] Sum Relations from Shuffle Products of Alternating Multiple Zeta Values
    Kwang-Wu Chen
    Mediterranean Journal of Mathematics, 2022, 19
  • [8] On Vectorized Weighted Sum Formulas of Multiple Zeta Values
    Chung, Chan-Liang
    Ong, Yao Lin
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 243 - 261
  • [9] A restricted sum formula among multiple zeta values
    Eie, Minking
    Liaw, Wen-Chin
    Ong, Yao Lin
    JOURNAL OF NUMBER THEORY, 2009, 129 (04) : 908 - 921
  • [10] ON GENERALIZATIONS OF WEIGHTED SUM FORMULAS OF MULTIPLE ZETA VALUES
    Ong, Yao Lin
    Eie, Minking
    Liaw, Wen-Chin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1185 - 1198