Local convergence analysis of two iterative methods

被引:0
|
作者
Santhosh George
Ioannis K. Argyros
Kedarnath Senapati
K. Kanagaraj
机构
[1] National Institute of Technology Karnataka,Department of Mathematical and Computational Sciences
[2] Cameron University,Department of Mathematical Sciences
[3] Srinivasa Ramanujan Centre,Department of Mathematics
[4] SASTRA Deemed to be University,undefined
来源
The Journal of Analysis | 2022年 / 30卷
关键词
Fréchet derivative; Order of convergence; Dynamics of iterative method; Iterative method; Banach space; 65G49; 47H99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider two three-step iterative methods with common first two steps. The convergence order five and six, respectively of these methods are proved using assumptions on the first derivative of the operator involved. We also provide dynamics of these methods
引用
收藏
页码:1497 / 1508
页数:11
相关论文
共 50 条
  • [1] Local convergence analysis of two iterative methods
    George, Santhosh
    Argyros, Ioannis K.
    Senapati, Kedarnath
    Kanagaraj, K.
    JOURNAL OF ANALYSIS, 2022, 30 (04) : 1497 - 1508
  • [2] Local convergence of a family of iterative methods for Hammerstein equations
    Martinez, Eulalia
    Singh, Sukhjit
    Hueso, Jose L.
    Gupta, Dharmendra K.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (07) : 1370 - 1386
  • [3] Local convergence of a family of iterative methods for Hammerstein equations
    Eulalia Martínez
    Sukhjit Singh
    José L. Hueso
    Dharmendra K. Gupta
    Journal of Mathematical Chemistry, 2016, 54 : 1370 - 1386
  • [4] Improved local analysis for a certain class of iterative methods with cubic convergence
    Hongmin Ren
    Ioannis K. Argyros
    Numerical Algorithms, 2012, 59 : 505 - 521
  • [5] Improved local analysis for a certain class of iterative methods with cubic convergence
    Ren, Hongmin
    Argyros, Ioannis K.
    NUMERICAL ALGORITHMS, 2012, 59 (04) : 505 - 521
  • [6] On the local convergence of a family of two-step iterative methods for solving nonlinear equations
    Grau-Sanchez, Miquel
    Noguera, Miquel
    Diaz-Barrero, Jose L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 753 - 764
  • [7] Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces
    Martinez, Eulalia
    Singh, Sukhjit
    Hueso, Jose L.
    Gupta, Dharmendra K.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 : 252 - 265
  • [8] Convergence analysis of iterative methods by pseudodifference operators
    Lötstedt, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 397 - 417
  • [9] Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods
    Artidiello, Santiago
    Chicharro, Francisco
    Cordero, Alicia
    Torregrosa, Juan R.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (10) : 2049 - 2060
  • [10] Local convergence of inexact Newton-like-iterative methods and applications
    Argyros, IK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) : 69 - 75