Willmore hypersurfaces with constant Möbius curvature in Rn+1

被引:0
|
作者
Tongzhu Li
Xiang Ma
Changping Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] Peking University,LMAM, School of Mathematical Sciences
来源
Geometriae Dedicata | 2013年 / 166卷
关键词
Möbius metric; Möbius sectional curvature; conformally flat hypersurface; Willmore hypersurface; 53A30; 53A55;
D O I
暂无
中图分类号
学科分类号
摘要
For an immersed hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : M^n \rightarrow R^{n+1}}$$\end{document} without umbilical points, one can define the Möbius metric g on f which is invariant under the Möbius transformation group. The volume functional of g is a generalization of the well-known Willmore functional, whose critical points are called Willmore hypersurfaces. In this paper, we prove that if a n-dimensional Willmore hypersurfaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(n \geq 3)}$$\end{document} has constant sectional curvature c with respect to g, then c = 0, n = 3, and this Willmore hypersurface is Möbius equivalent to the cone over the Clifford torus in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^{3} \subset R^{4}}$$\end{document} . Moreover, we extend our previous classification of hypersurfaces with constant Möbius curvature of dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \ge 4}$$\end{document} to n = 3, showing that they are cones over the homogeneous torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^1(r) \times S^1(\sqrt{1 - r^2}) \subset S^3}$$\end{document} , or cylinders, cones, rotational hypersurfaces over certain spirals in the space form R2, S2, H2, respectively.
引用
收藏
页码:251 / 267
页数:16
相关论文
共 3 条
  • [1] Willmore hypersurfaces with constant Mobius curvature in Rn+1
    Li, Tongzhu
    Ma, Xiang
    Wang, Changping
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 251 - 267
  • [2] Curvilinear coordinates on generic conformally flat hypersurfaces and constant curvature 2-metrics
    Burstall, Francis E.
    Hertrich-Jeromin, Udo
    Suyama, Yoshihiko
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (02) : 617 - 649
  • [3] A Mobius scalar curvature rigidity on compact conformally flat hypersurfaces in Sn+1
    Lin, Limiao
    Li, Tongzhu
    Wang, Changping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 762 - 775