Optimization of arsenite removal by adsorption onto organically modified montmorillonite clay: Experimental & theoretical approaches

被引:0
作者
Anoushiravan Mohseni Bandpei
Seyed Mohsen Mohseni
Amir Sheikhmohammadi
Mahdieh Sardar
Maryam Sarkhosh
Mohammad Almasian
Moayad Avazpour
Zahra Mosallanejad
Zahra Atafar
Shahram Nazari
Soheila Rezaei
机构
[1] Shahid Beheshti University of Medical Sciences,Department of Environmental Health Engineering, School of Public Health
[2] Qom University of Medical Sciences,Department of Environmental Health Engineering, School of Public Health
[3] Shahid Beheshti University of Medical Sciences,Students Research Office, Department of Environmental Health Engineering, School of Public Health
[4] Mashhad University of Medical Sciences,Department of Environmental Health Engineering, School of Public Health
[5] Lorestan University of Medical Sciences,School of Medicine
[6] Ilam University of Medical Science,Department of Environmental Health Engineering, School of Public Health
[7] Hormozgan University of Medical Sciences,Food and Cosmetic Health Research Center
[8] Kermanshah University of Medical Sciences,Research Center for Environmental Determinants of Health (RCEDH)
[9] Ardabil University of Medical Sciences,Department of Environmental Health Engineering, School of Public Health
[10] Yasuj University of Medical Sciences,Social Determinants of Health Research Center
来源
Korean Journal of Chemical Engineering | 2017年 / 34卷
关键词
Modeling; Response Surface Methodology; Organic Nanoclay; Arsenite; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Arsenic is a critical contaminant for aqueous environments as it poses harmful health risks. To meet the stringent regulations regarding the presence of arsenic in aqueous solutions, the feasibility of montmorillonite clay modified with hexadecyltrimethyl ammonium chloride as the adsorbent was tested for the removal of arsenic ions from aqueous solutions. A scanning electron microscopy (SEM) study confirmed that the organically modified nanoclay (ONC) adsorbent had a porous structure with a vast adsorbent surface.The x-ray fluorescence (XRF) analysis proved the presence of carbon in the structure of the modified nanoclay that can be evidence for the creation of ONC. The x-ray diffraction (XRD) analysis results confirm the existence of four main groups of minerals, carbonate (Calcite), clay (Askmtyt and Kandyt), silicate (Quartz), and phyllosilicate (Kaolinite), in the ONC structure.The influence of various parameters such as solution pH, adsorbent dosage, initial arsenite concentration, and contact time on arsenic adsorption onto ONC was investigated. A 25 full factorial central composite experimental design was applied. A central composite design under response surface methodology (RSM) was employed to investigate the effects of independent variables on arsenite removal and to determine the optimum condition. The experimental values were in a good fit with the ones predicted by the model. The optimal operating points (adsorbent dosage: 3.7 g L−1, surfactant dosage: 3 g L−1 and the contact time: 37.2min) giving maximum arsenite removal (95.95%) were found using Solver “Add-ins” in Microsoft Excel 2010.
引用
收藏
页码:376 / 383
页数:7
相关论文
共 146 条
  • [1] Navoni J.(2014)undefined Sci. Total Environ. 499 166-undefined
  • [2] De Pietri D.(2016)undefined Chem. Eng. J. 294 210-undefined
  • [3] Olmos V.(2016)undefined J. Hazard. Mater. 302 166-undefined
  • [4] Gimenez C.(2002)undefined Appl. Geochem. 17 517-undefined
  • [5] Mitre G. B.(2004)undefined Toxicol. Appl. Pharmacol. 198 243-undefined
  • [6] de Titto E.(2016)undefined J. Environ. Manage. 166 387-undefined
  • [7] Lepori E. V.(2015)undefined Chem. Eng. J. 271 135-undefined
  • [8] Ocinski D.(2015)undefined J. Hazard. Mater. 289 54-undefined
  • [9] Jacukowicz-Sobala I.(2015)undefined J. Colloid Interface Sci. 453 132-undefined
  • [10] Mazur P.(2004)undefined Adv. Mater. Res. 16 1553-undefined