Some fractional integral inequalities involving m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m}$$\end{document}-convex functions

被引:0
作者
Mohamed Jleli
Donal O’Regan
Bessem Samet
机构
[1] King Saud University,Department of Mathematics, College of Science
[2] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
关键词
-convexity; Inequalities; Fractional integral with respect to another function; 26D10; 35A23; 26A33; 26A51;
D O I
10.1007/s00010-017-0470-2
中图分类号
学科分类号
摘要
In this paper, some fractional integral inequalities involving m-convex functions are established. The presented results are generalizations of the obtained inequalities in Dragomir and Toader (Babeş-Bolyai Math 38:21–28, 1993).
引用
收藏
页码:479 / 490
页数:11
相关论文
共 33 条
[1]  
Belarbi S(2009)On some new fractional integral inequalities J. Inequal. Pure Appl. Math. 10 86-497
[2]  
Dahmani Z(2010)New inequalities in fractional integrals Int. J. Nonlinear Sci. 9 493-99
[3]  
Dahmani Z(2010)New generalizations of Gruss inequality using Riemann–Liouville fractional integrals Bull. Math. Anal. Appl. 2 93-55
[4]  
Dahmani Z(2002)On some new inequalities of Hermite–Hadamard type for Tamkang J. Math. 33 45-28
[5]  
Tabharit L(1993)-convex functions Babeş-Bolyai Math. 38 21-1063
[6]  
Taf S(2014)Some inequalities for J. Math. Anal. Appl. 412 1058-67
[7]  
Dragomir SS(2013)-convex functions, Studia Univ J. Inequal. Appl. 2013 491-451
[8]  
Dragomir SS(2014)On a Lyapunov-type inequality and the zeros of a certain Mittag–Leffler function Math. Sci. Appl. E-Notes 2 55-1260
[9]  
Toader GH(2015)New general integral inequalities for quasi-geometrically convex functions via fractional integrals Math. Inequal. Appl. 18 443-826
[10]  
Ferreira RAC(2016)On generalization of different type integral inequalities for s-convex functions via fractional integrals J. Nonlinear Sci. Appl. 9 1252-15