An analytical treatment toward solution of fractional Schrödinger equation

被引:0
|
作者
Bahram Agheli
Rahmat Darzi
机构
[1] Islamic Azad University,Department of Mathematics, Qaemshahr Branch
[2] Islamic Azad University,Department of Mathematics, Neka Branch
来源
Optical and Quantum Electronics | 2017年 / 49卷
关键词
New homotopic perturbation method; Fractional Schrödinger equation; Caputo derivative; 14F35; 26A33; 45J05;
D O I
暂无
中图分类号
学科分类号
摘要
We have applied the new approach of homotopic perturbation method (NHPM) for Schrödinger equation featuring time-fractional derivative. A combination of NHPM, Laplace transform and multiple fractional power series form has been used the first time to present analytical solution. Then, in order to illustrate the simplicity and ability of the suggested approach, some specific and clear examples have been given. All numerical calculations in this manuscript have been carried out with Mathematica.
引用
收藏
相关论文
共 50 条
  • [21] Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method
    Marwan Alquran
    H. M. Jaradat
    Muhammed I. Syam
    Nonlinear Dynamics, 2017, 90 : 2525 - 2529
  • [22] Analytical solution of the generalized Bagley-Torvik equation
    Pang, Denghao
    Jiang, Wei
    Du, Jun
    Niazi, Azmat Ullah Khan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [23] NUMERICAL SOLUTION OF FRACTIONAL TELEGRAPH EQUATION VIA THE TAU METHOD
    Saadatmandi, Abbas
    Mohabbati, Mohadeseh
    MATHEMATICAL REPORTS, 2015, 17 (02): : 155 - 166
  • [24] A finite element solution for the fractional advection-dispersion equation
    Huang, Quanzhong
    Huang, Guanhua
    Zhan, Hongbin
    ADVANCES IN WATER RESOURCES, 2008, 31 (12) : 1578 - 1589
  • [25] Solution method for the time-fractional hyperbolic heat equation
    Dassios, Ioannis
    Font, Francesc
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (15) : 11844 - 11855
  • [26] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [27] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [28] An approximate solution of nonlinear fractional reaction-diffusion equation
    Das, S.
    Gupta, P. K.
    Ghosh, P.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 4071 - 4076
  • [29] A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation
    Karaagac, Berat
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2019, 22 (02): : 443 - 451
  • [30] A fractional model of Harry Dym equation and its approximate solution
    Kumar, Sunil
    Tripathi, Manoj P.
    Singh, Om P.
    AIN SHAMS ENGINEERING JOURNAL, 2013, 4 (01) : 111 - 115