Simplifying one-loop amplitudes in superstring theory

被引:0
作者
Massimo Bianchi
Dario Consoli
机构
[1] Dipartimento di Fisica,
[2] Università di Roma “Tor Vergata”,undefined
[3] INFN Sezione di Roma “Tor Vergata”,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Superstrings and Heterotic Strings; Intersecting branes models; D-branes; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
We show that 4-point vector boson one-loop amplitudes, computed in [1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SUSY in D = 4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (−+++). In the MHV case (−−++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviours and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D = 4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1,2 $$\end{document} sectors.
引用
收藏
相关论文
共 142 条
  • [31] Mafra CR(2015)Elliptic multiple zeta values and one-loop superstring amplitudes JHEP 07 112-undefined
  • [32] Schlotterer O(1996)Implications of Abelian extended gauge structures from string models Phys. Rev. D 54 3570-undefined
  • [33] Stieberger S(1999)Anomalous U(1)’s in type-I and type IIB D = 4, N = 1 string vacua Nucl. Phys. B 542 112-undefined
  • [34] Barreiro LA(1998)D = 4, N = 1, type IIB orientifolds Nucl. Phys. B 536 29-undefined
  • [35] Medina R(2002)Anomalous U(1)s in type 1 superstring vacua Nucl. Phys. B 637 92-undefined
  • [36] Barreiro LA(2003)4D anomalous U(1)’s, their masses and their relation to 6D anomalies JHEP 08 005-undefined
  • [37] Medina R(2006)Anomalies, anomalous U(1)’s and generalized Chern-Simons terms JHEP 11 057-undefined
  • [38] Green MB(1992)Toroidal compactification and symmetry breaking in open string theories Nucl. Phys. B 376 365-undefined
  • [39] Schwarz JH(1998)A note on toroidal compactifications of the type-I superstring and other superstring vacuum configurations with sixteen supercharges Nucl. Phys. B 528 73-undefined
  • [40] Gross DJ(1998)Toroidal compactification without vector structure JHEP 02 006-undefined