Development of Predictive Models in Patients with Epiphora Using Lacrimal Scintigraphy and Machine Learning

被引:0
作者
Yong-Jin Park
Ji Hoon Bae
Mu Heon Shin
Seung Hyup Hyun
Young Seok Cho
Yearn Seong Choe
Joon Young Choi
Kyung-Han Lee
Byung-Tae Kim
Seung Hwan Moon
机构
[1] Sungkyunkwan University School of Medicine,Departments of Nuclear Medicine, Samsung Medical Center
来源
Nuclear Medicine and Molecular Imaging | 2019年 / 53卷
关键词
Epiphora; Dacryocystography; Lacrimal scintigraphy; Machine learning; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:125 / 135
页数:10
相关论文
共 72 条
[1]  
Lee JG(2017)Deep learning in medical imaging: general overview Korean J Radiol 18 570-584
[2]  
Jun S(2018)Deep learning in nuclear medicine and molecular imaging: current perspectives and future directions Nucl Med Mol Imaging 52 109-118
[3]  
Cho YW(2018)Radiomics and deep learning in clinical imaging: what should we do? Nucl Med Mol Imaging 52 89-90
[4]  
Lee H(2018)Using a guided machine learning ensemble model to predict discharge disposition following meningioma resection J Neurol Surg B Skull Base 79 123-130
[5]  
Kim GB(2018)Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning J Nucl Med 59 892-899
[6]  
Seo JB(2017)The value of lacrimal scintillography in the assessment of patients with epiphora Eye (Lond) 31 1020-1026
[7]  
Choi H(2012)Lacrimal scintigraphy: “interpretation more art than science” Orbit 31 77-85
[8]  
Choi JY(2004)Assessment of functional nasolacrimal duct obstruction—a survey of ophthalmologists in the southwest Eye (Lond) 18 20-23
[9]  
Muhlestein WE(2014)Regularized machine learning in the genetic prediction of complex traits PLoS Genet 10 e1004754-2664
[10]  
Akagi DS(2017)Artificial intelligence in precision cardiovascular medicine J Am Coll Cardiol 69 2657-86