Comparing Verboseness for Finite Automata and Turing Machines

被引:0
作者
Till Tantau
机构
[1] Fakultät IV — Elektrotechnik und Informatik,
[2] Technische Universität Berlin,undefined
[3] Franklinstraße 28/29,undefined
[4] D-10587 Berlin,undefined
来源
Theory of Computing Systems | 2004年 / 37卷
关键词
Turing Machine; Identical Behaviour; Finite Automaton; Diagonalisation Method; Characteristic String;
D O I
暂无
中图分类号
学科分类号
摘要
A language is called (m,n)-verbose if there exists a Turing machine that enumerates for any n words at most m possibilities for their characteristic string. This notion is compared with (m,n)-fa-verboseness, where instead of a Turing machine a finite automaton is used. By use of a new diagonalisation method, where finite automata trick Turing machines, it is shown that all (m,n)-verbose languages are (h,k)-verbose iff all (m,n)-fa-verbose languages are (h,k)-fa-verbose. In other words, Turing machines and finite automata behave exactly the same way with respect to inclusion of verboseness classes. This identical behaviour implies that the nonspeedup theorem also holds for finite automata. As an application of the theoretical framework, a lower bound is derived on the number of bits that need to be communicated to finite automata protocol checkers for nonregular protocols.
引用
收藏
页码:95 / 109
页数:14
相关论文
empty
未找到相关数据