On elliptic operator pencils with general boundary conditions

被引:0
作者
R. Denk
R. Mennicken
L. Volevich
机构
[1] Universität Regensburg,NWF I
[2] Russian Acad. Sci.,Mathematik
来源
Integral Equations and Operator Theory | 2001年 / 39卷
关键词
35J40; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper parameter-dependent partial differential operators are investigated which satisfy the condition of N-ellipticity with parameter, an ellipticity condition formulated with the use of the Newton polygon. For boundary value problems with general boundary operators we define N-ellipticity including an analogue of the Shapiro-Lopatinskii condition. It is show that the boundary value problem is N-elliptic if and only if an a priori estimate with respect to certain parameter-dependent norms holds. These results are closely connected with singular perturbation theory and lead to uniform estimates, for problems of Vishik-Lyusternik type containing a small parameter.
引用
收藏
页码:15 / 40
页数:25
相关论文
共 15 条
[1]  
Agmon S.(1962)On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems Comm. Pure Appl. Math. 15 119-147
[2]  
Agmon S.(1959)Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions. I Comm. Pure Appl. Math. 22 623-727
[3]  
Douglis A.(1964)Elliptic problems with parameter and parabolic problems of general form Uspekhi Mat. Nauk 19 53-161
[4]  
Nirenberg L.(1998)The Newton polygon and elliptic problems with parameter Math. Nachr. 192 125-157
[5]  
Agranovich M. S.(1979)Coercive singular perturbations. I. A priori estimates Ann. Mat. Pura Appl. 119 41-113
[6]  
Vishik M. I.(1981)The Vishik-Lyusternik method for elliptic boundary value problems in regions, with conic points. I. The problem in a cone Sibirsk. Mat. Zh. 22 142-163
[7]  
Denk R.(1957)Regular degeneration and boundary layer for linear differential equations with small parameter Uspehi Mat. Nauk (N.S.) 12 3-122
[8]  
Mennicken R.(1965)Some spaces of generalized functions and embedding theorems Uspehi Mat. Nauk 20 3-74
[9]  
Volevich L.(undefined)undefined undefined undefined undefined-undefined
[10]  
Frank L.(undefined)undefined undefined undefined undefined-undefined