An explicit extragradient algorithm for equilibrium problems on Hadamard manifolds

被引:0
作者
Jingjing Fan
Bing Tan
Songxiao Li
机构
[1] University of Electronic Science and Technology of China,Institute of Fundamental and Frontier Sciences
来源
Computational and Applied Mathematics | 2021年 / 40卷
关键词
Equilibrium problem; Hadamard manifold; Extragradient algorithm; Pseudomonotone bifunction; Lipschitz-type bifunction; 47H05; 47J25; 90C33; 91B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a new extragradient algorithm for solving pseudomonotone equilibrium problems on Hadamard manifolds. Our algorithm uses a variable stepsize, which is updated at each iteration and based on some previous iterates. The convergence analysis of the proposed algorithm is discussed under mild assumptions. In the case where the equilibrium bifunction is strongly pseudomonotone, the R-linear rate of convergence of the new algorithm is formulated. A fundamental experiment is provided to illustrate the numerical behavior of the algorithm.
引用
收藏
相关论文
共 67 条
[1]  
Ansari QH(2019)Regularization of proximal point algorithms in Hadamard manifolds J Fixed Point Theory Appl 21 1-23
[2]  
Babu F(2020)Nonsmooth variational inequalities on Hadamard manifolds Appl Anal 99 340-358
[3]  
Yao JC(2016)A second order nonsmooth variational model for restoring manifold-valued images SIAM J Sci Comput 38 A567-A597
[4]  
Ansari QH(2016)A parallel Douglas–Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds SIAM J Imaging Sci 9 901-937
[5]  
Islam M(1994)From optimization and variational inequalities to equilibrium problems Math Stud 63 123-145
[6]  
Yao JC(2008)An inexact modified subgradient algorithm for nonconvex optimization Comput Optim Appl 45 1-24
[7]  
Bačák M(2015)A proximal point method for a class of monotone equilibrium problems with linear constraints Oper Res 15 275-288
[8]  
Bergmann R(2020)Projection algorithm for fixed point and equilibrium problems in a reflexive Banach space Filomat 34 1487-1497
[9]  
Steidl G(2012)Equilibrium problems in Hadamard manifolds J Math Anal Appl 388 61-77
[10]  
Weinmann A(2003)Newton’s method on Riemannian manifolds: covariant alpha theory IMA J Numer Anal 23 395-419